现代材料检测 第九章x俄歇电子.ppt

  1. 1、本文档共105页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第九章 材料表面分析技术 X射线光电子能谱 (X-ray Photoelectron Spectroscopy,XPS) 俄歇电子能谱 (Auger Electron Spectroscopy,AES) 电子能谱学的定义 电子能谱学可以定义为利用具有一定能量的粒子(光子,电子,粒子)轰击特定的样品,研究从样品中释放出来的电子或离子的能量分布和空间分布,从而了解样品的基本特征的方法。 入射粒子与样品中的原子发生相互作用,经历各种能量转递的物理效应,最后释放出的电子和粒子具有样品中原子的特征信息。 通过对这些信息的解析,可以获得样品中原子的各种信息如含量,化学价态等。 电子能谱分析 俄歇电子能谱 AES Auger Electron Spectroscopy 俄歇电子能谱的建立 1925年Pierre Auger就在Wilson云室中发现了俄歇电子,并进行了理论解释; 1953年J.J.Lander首次使用了电子束激发的俄歇电子能谱(Auger Electron Spectroscopy, AES)并探讨了俄歇效应应用于表面分析的可能性 1967年在Harris采用了微分锁相技术,使俄歇电子能谱获得了很高的信背比后,才开始出现了商业化的俄歇电子能谱仪 1969年Palmberg等人引入了筒镜能量分析器(Cylindrical Mirror Analyser,CMA),使得俄歇电子能谱的信背比获得了很大的改善 70年代中期,把细聚焦扫描入射电子束与俄歇能谱仪结合构成扫描俄歇微探针(SAM)配备有二次电子和吸收电子检测器及能谱探头,兼有扫描电镜和电子探针的功能 俄歇电子的产生 俄歇电子能谱的原理 俄歇电子的产生 俄歇电子能谱的原理比较复杂,涉及到原子轨道上三个电子的跃迁过程。 当具有足够能量的粒子(光子、电子或离子)与一个原子碰撞时,原子内层轨道上的电子被激发出后,在原子的内层轨道上产生一个空穴,形成了激发态正离子。 这种激发态正离子是不稳定的,必须通过退激发而回到稳定态。在这激发态离子的退激发过程中,外层轨道的电子可以向该空穴跃迁并释放出能量,而该释放出的能量又可以激发同一轨道层或更外层轨道的电子使之电离而逃离样品表面,这种出射电子就是俄歇电子。 俄歇跃迁过程定义及标记 俄歇跃迁所产生的俄歇电子可以用它跃迁过程中涉及的三个原子轨道能级的符号来标记; EWXY(Z)= EW(Z) - EX(Z) - EY(Z) 如图1所示的俄歇跃迁所产生的俄歇电子可被标记为WXY跃迁。 其中激发空穴所在的轨道能级标记在首位,中间为填充电子的轨道能级,最后是激发俄歇电子的轨道能级。 如 C KLL跃迁,表明在碳原子的K轨道能级 (1s)上激发产生一个空穴,然后外层的L轨道能级(2s)的电子填充K轨道能级上的空穴,同时外层L轨道能级(2p)上的另一电子激发发射。 俄歇电子能谱仪的基本结构 真空系统 超高真空的获得 电子枪 能量分析器 离子枪 数据采集和处理系统 1. 激发源 2. 电子能量分析器 3. 检测器 俄歇化学效应 俄歇电子涉及到三个原子轨道能级; 但由于原子内部外层电子的屏蔽效应,芯能级轨道和次外层轨道上的电子的结合能在不同的化学环境中是不一样的,有一些微小的差异。 这种轨道结合能上的微小差异可以导致俄歇电子能量的变化,这种变化就称作元素的俄歇化学位移,它取决于元素在样品中所处的化学环境。 利用这种俄歇化学位移可以分析元素在该物种中的化学价态和存在形式。在表面科学和材料科学的研究中具有广阔的应用前景 俄歇化学效应 俄歇化学效应有三类; 原子发生电荷转移引起内层能级移动; 化学环境变化引起价电子态密度变化,从而引起价带谱的峰形变化; 俄歇电子逸出表面时由于能量损失机理引起的低能端形状改变,同样也与化学环境有关。 金属Ni的MVV俄歇电子动能为61.7 eV; NiO中的Ni MVV俄歇峰的能量为57.5 eV, 俄歇化学位移为-4.2 eV; Ni2O3, Ni MVV的能量为52.3 eV, 俄歇化学位移为-9.4 eV。 Si3N4的Si LVV俄歇动能为80.1 eV, 俄歇化学位移为-8.7 eV。 而SiO2的Si LVV的俄歇动能为72.5 eV, 俄歇化学位移为-16.3 eV。 不论是Si3N4还是SiO2,其中在SiO2和Si3N4中, Si都是以正四价存在, 但Si3N4的Si-N键的电负性差为-1.2,俄歇化学位移为-8.7 eV。而在SiO2中, Si-O键的电负性差为-1.7, 俄歇化学位移则为-16.3 eV。 俄歇电子强度 俄歇电子的强度是俄歇电子能谱进行元素定量分析的基础。 俄歇电子的强度除与元素的存在量有关外,还与原子的电离截面,俄歇产率以及逃逸深度等因素有关。 电离截面 所谓电

文档评论(0)

369221 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档