- 1、本文档共44页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
深度学习报告
在写本报告前,阅读了《The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches》,并在网上查看了一些相关的内容,对其整合和理解。但是其中的很多细节还没有足够的时间去探索,有的概念也不是很确定自己说的对不对,还望指正。
这篇报告的主要目标是介绍深度学习的总体思路及其应用相关领域,包括有监督(如 DNN、CNN 和 RNN)、无监督(如 AE、GAN)(有时 GAN 也用于半监督学习任务)和深度强化学习(DRL)的思路。在某些情况下,深度强化学习被认为是半监督/无监督的方法。本论文的其余部分的组织方式如下:第一节主要介绍深度学习分类和特征。第二节讨论 DNN,第三节讨论 CNN;第四节介绍了不同的先进技术,以有效地训练深度学习模型; 第五节讨论 RNN; 第六节讨论AE; 第七节讨GAN;第八节中介绍强化学习(RL);第九节解释迁移学习; 第十节介绍了深度学习的高效应用方法和硬件; 第十一节讨论了深度学习框架和标准开发工具包(SDK)。
下面是AI,ML,NN,DL的关系图:
一.深度学习分类和特征
A.深度学习类型
深度学习方法可以分为以下几个类:监督学习,半监督学习,无监督学习,此外,还有另一类学习方法称为强化学习(RL)或深度强化学习(DRL),它们经常在半监督或有时在非监督学习方法的范围内讨论。
(1)监督学习
将大量的数据输入机器,这些数据被事先贴上标签,例如,要训练一个神经网络来识别苹果或者橙子的图片,就需要给这些图片贴上标签,机器通过识别所有被标记为苹果或橙子的图片来理解数据,这些图片有共同点,因此机器可以利用这些已识别的图片来更准确的预测新图片中的内容到底是苹果还是橙子。他们看到的标记数据越多,看到的数据集越大,预测准确性就越高。所以监督学习是一种使用标注数据的学习技术。在其案例中,环境包含一组对应的输入输出 。比如,输入是 x_t,智能体预测后的值与标签对比来获得损失值。接着智能体不断迭代调整网络参数,从而更好地近似期望输出。成功训练之后,智能体可对环境问题做出正确回答。
监督学习主要有以下几种:深度神经网络 (DNN)、卷积神经网络 (CNN)、循环神经网络(RNN)
(2)无监督学习
一种不使用标注数据的学习技术,即不知道输入数据对应的输出结果是什么。在这种情况下,无监督学习只能默默的读取数据,自己寻找数据的模型和规律,而不需要监护人的指导。无监督学习方法通常有聚类、降维和生成技术等。有些深度学习技术擅长聚类和非线性降维,如自编码器(AE)和 GAN等。此外,RNN(比如 LSTM)和 RL也被用作半监督学习 [243]。到目前为止,在任何方面无监督学习都达不到监督学习的准确性和有效性。
(3)半监督学习
一种使用部分标注数据的学习技术(通常被称之为强化学习),半监督学习训练中使用的数据,只有一小部分是标记过的,而大部分是没有标记的。因此和监督学习相比,半监督学习的成本较低,但是又能达到较高的准确度。在一些案例中,深度强化学习(DRL)和生成对抗网络(GAN)常被用作半监督学习技术。此外,包含 LSTM 的 RNN 和 GRU 也可划分为半监督学习。
(4)强化学习(RL)
强化学习(RL)不同于监督学习和非监督学习。在强化学习(RL)中没有原始已知数据可以学习。强化学习面对的是一个不断变化的状态空间要解决的是一个决策链问题。其目的是找到在当前环境(状态空间)下最佳决策是什么。这里的挑战是,当下的决策好坏当下无法验证和评估,要根据多次决策以后才能知道。就像下棋,当前的决策(棋子落点)要在五步十步棋之后才能判断是好是坏。所以强化学习中并没有大量的原始已知输入数据,机器需要在变化的环境中通过多次的试错学习,再根据某种规则找到产生最佳结果的最佳路径,从而做出最佳决策。比较常见的应用有下棋(包括下围棋和象棋)、机器人、自动驾驶等,这些人工智能技术中都用到了强化学习。
B.特征学习
通过机器学习解决问题的思路:传感器获得数据——》预处理——》特征提取——》特征选择——》推理,预测和识别(机器学习的部分),中间三部分也叫特征表达,而特征是机器学习系统的原材料,对最终模型影响很重要,数据要能够被很好的表达成特征,但是这一部分一般是靠人工提取特征,而手工提取需要专业知识,费时,靠经验和运气。传统的机器学习特征提取算法包括:尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)、GIST、RANSAC、直方图方向梯度(HOG)、局部二元模式(LBP)、经验模式分解(EM
您可能关注的文档
- 申请代理合作意向书.doc
- 申请单一来源采购方式公示文书格式.doc
- 申请电网改造项目的报告.doc
- 申请电子发票情况说明 模板.doc
- 申请法院强制执行申请书.doc
- 申请高新技术企业的流程.doc
- 申请个体户需要用的租赁协议样本.doc
- 申请国家励志奖学金 个人事迹材料.doc
- 申请国外交流的自我介绍.doc
- 申请国外专利需逐一向每一个国家申请吗.doc
- 2024年湖南省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年江西省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年安徽省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年福建省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年广东省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年河北省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年河南省高考英语试卷(含答案解析)+听力音频.docx
- 2024年湖北省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年湖南省高考英语试卷(含答案解析)+听力音频+听力原文.docx
- 2024年江苏省高考英语试卷(含答案解析)+听力音频+听力原文.docx
最近下载
- 贵州省贵阳市普通中学2021-2022学年高一上学期信息技术期末监测考试试卷.docx VIP
- PCB镀铜针孔专案改善报告.ppt
- 体表肿块切除操作评分标准.doc
- (苏教版)数学二年级上册寒假作业计算题“天天练”,含30份题组,附参考答案.doc
- 2023年福建考评员考试答案.docx VIP
- 第二单元跨学科实践活动1微型空气质量“检测站”的组装与使用课件-九年级化学人教版(2024)上册.pptx
- 数学核心素养在小学教育中的具体应用教学研究课题报告.docx
- 人防工程战时给排水设备安装深度及注意问题.pptx
- 上海交通大学《社会心理学》内部题库练习期末真题汇编及答案.pdf
- 《工程制图及 CAD》课程思政教学案例(一等奖).docx
文档评论(0)