网站大量收购闲置独家精品文档,联系QQ:2885784924

海洋环境下混凝土结构耐久性问题的分析与建议.doc

海洋环境下混凝土结构耐久性问题的分析与建议.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
土木工程材料论文 姓 名:童向军 学 号班 级:土木1104班 指导教师:安明喆 学 院:北京交通大学土建学院 海洋环境下混凝土结构耐久性问题的分析与建议 摘要:在海洋环境下构建大型人工构造物,混凝土的耐久性问题至关重要,并且其受多方面的因素影响。比如对抗侵蚀的破坏,对抗冻性的破坏,对抗碳化性的破坏等。其中,对抗侵蚀的破坏又包括生物侵蚀、化学侵蚀、体积不稳定性破坏以及物理破坏等。要防止或者减缓这种破坏,我们需要采用一些措施。主要包括以下几个方面:(1) 对混凝土原材料进行选取 (2) 增添表面涂层 (3) 使用外加剂技术(4)采用特殊防腐措施(5)减缓钢筋锈蚀(6)加强施工管理、提高施工质量7)重视使用阶段的维护和管理。我们只有清晰地认识了已经存在或者可能存在的问题,才能够更好地提出和采取针对性的措施来解决这些问题,为我国的建设事业做出一定的贡献。 正文:我国目前正处于大规模建设基础设施时期。临海城市深水港的建设已为世人瞩目,对沿海城市经济持续高速发展将起到十分重要的拉动作用。作为深水港重要组成之一的跨海通道(大桥、隧道等),无论是从跨度、连接功能,还是交通纽带,其建设和服役环境(海洋环境)是建筑物(或构筑物)面临的新挑战。为达到跨海通道(复杂环境下)的设计使用寿命(100年),混凝土的耐久性问题至关重要,必须处理好。 混凝土的耐久性是指混凝土的结构在规定的使用年限以内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、能够正常使用和有可接受的外观的能力。现行国家标准《混凝土结构设计规范》(GB50010-2002)中,明确规定了混凝土结构设计采用极限状态设计方法。然而在海洋环境下,混凝土的耐久性问题又与其他环境下耐久性问题有所不同,拿其他环境下混凝土的制作规格,用在构造类似于跨海大桥等这类建筑上,无疑是不可取的。 海洋中对混凝土结构耐久性破坏的因素 海港、码头、引桥、防浪堤坝等与海水直接接触的建筑工程中的混凝土建筑物和构件由于长期受海水的腐蚀,混凝土中的钢筋锈蚀现象非常严重,导致海港工程达不到设计使用期限的要求。 (1) 对抗侵蚀性的破坏 a. 生物因素(生物侵蚀) 海洋中影响混凝土结构耐久性的生物因素主要包括一些大型藻类、水螅、外肛动物、龙介虫、双壳类、藤壶和海鞘。近年来,随着航运、海防、水产养殖以及海滨电厂等的发展,海洋生物污损所带来的危害越来越严重。 混凝土的失效与微生物的新陈代谢作用有关,硫氧化菌、硫杆菌和噬混凝土菌等细菌的生存代谢生成生物硫酸导致混凝土腐蚀。海洋中约有细菌1 500多种,每毫升海水最多可有100万个细菌,并且多数为附着在海水中物体表面,经过研究发现和混凝土、钢铁腐蚀有关的细菌有氧化铁杆菌、氧化硫杆菌、排硫杆菌、去硫弧菌等可直接和间接控制腐蚀。它们以各种络合能力不同的金属络离子和多种无机、有机配体,构成了多种复杂的络合平衡体系,通过化学作用产生有机酸使混凝土遭受酸腐蚀,而有些嗜酸菌还会跟着有机酸进入混凝土内部结构并且繁殖,加速其破坏。即使在无氧情况下,也可由厌氧微生物产生的代谢酸进行腐蚀。 b. 无机离子(化学侵蚀) 无机离子对混凝土的腐蚀主要有以下两个方面:一是硫酸盐和水泥的化学反应,二是Cl离子和水泥胶凝材料的化学结合。硫酸盐与混凝土接触时,产生钙矾石,造成混凝土膨胀,使它的表层开裂或软化。而裂缝又助长了硫酸盐和其它离子的侵蚀渗透,进一步加速了混凝土的破坏。氯化物则是与水泥中的C3 A发生反应,生成高膨胀性的氯铝酸盐。同时,氯离子渗入钢筋表面,钢筋锈蚀亦引起体积膨胀,使混凝土保护层胀裂,反过来又加速了钢筋的腐蚀,从而影响承载力,直至结构被破坏。其反应机理如下: Fe2++2Cl-+2H2O→Fe(OH)2+2HCl 4Fe(OH)2+O2+2H2O→4Fe(OH)3 镁盐(MgSO4和MgCl2)在海水中含量较大,深入混凝土中将和Ca(OH)2发生以下反应: Ca(OH)2+MgSO4+2H2O→CaSO4·2H2O+ Mg(OH)2 ↓ Ca(OH)2+ MgCl2→CaCl2+ Mg(OH)2↓ 虽然生产的固相物质积聚在空隙内,在一定程度上可以阻止介质的侵入,但是大量的Ca(OH)2与镁盐反应后,碱度降低会使水泥中的水化硅酸钙和水化氯酸钙与酸性的镁盐反应,同时生成的Mg(OH)2还能与铝胶、硅胶缓慢反应,造成混凝土粘结力减弱,导致混凝土强度降低。 海水中还存在一定的S042-,当SO42-进入混凝土内部后与混凝土的某些成分反应,生成物吸水肿胀产生膨胀应力,当应力达到一定程度时混凝土就产生裂缝,这种腐蚀作用在不同条件下又有两种表现形式,即E盐破坏和G盐破坏。 E盐破坏即钙矾石膨胀破坏,G盐破坏即

文档评论(0)

我思故我在 + 关注
实名认证
内容提供者

部分用户下载打不开,可能是因为word版本过低,用wps打开,然后另存为一个新的,就可以用word打开了

1亿VIP精品文档

相关文档