网站大量收购独家精品文档,联系QQ:2885784924

锂离子电池碳负极材料研究进展.docVIP

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘 要 综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词 锂离子电池 负极材料 碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130) Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-xCoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,非晶体的过渡形式则不胜枚举。对炭素材料有各种不同的分类方法。按照锂离子电池负极材料的发展方向,本文将碳材料分为石墨化碳和无定型碳[3]。 石墨化碳的电极性能 石墨类碳材料的嵌锂行为时目前研究的比较透彻并且已得到大家的公认。石墨中的碳原子为sp2杂化并形成片层结构,层与层之间通过范德华力结合,层内原子间是共价键结合。在电化学嵌入反应过程中,部分溶剂化的锂离子嵌入时会同时带入溶剂分子,造成溶剂共嵌入,会使石墨片层结构逐渐被剥离。这在以PC为溶剂的电解液体系中特别明显。 2.1天然石墨 天然石墨是石墨化程度高、结晶完整、嵌入位置多、容量大。锂的可逆插入容量在合适的电解质中可达372mAh/g,即为理论水平[2]。其电位曲线变化如图1所示,具有明显的放电平台,且平台电位很低,一般不超过0.3V,故电池的端电压高,有高的比容量[4]。但由于墨片面容易发生剥离,因此循环性能不是很理想。通过改性,可以有效防止。对于普通的天然石墨而言,由于自然进化过程中石墨化过程不彻底,一般容量低于300mAh/g。第一次循环的充放电效率低于80%,而且循环性能也不理想。天然石墨作为负极材料在低温(例如-20℃)下的电化学行为也不理想,认为主要是锂离子在石墨中的扩散慢造成的。因此在改性时,锂离子在石墨中的动力学扩散是关键[5]。 图1 石墨的锂电位和容量的关系[4] 2.2中间相微珠碳 产业化的锂离子电池的负极材料均为碳材料,包括天然石墨、MCMB、焦炭等,在这些材料中,MCMB被认为是最具有发展潜力的一种碳材料,这不仅是因为它的比容量可以达300mAh/g。更重要的原因在于,与其他碳材料相比,MCMB的直径为5~40μm,呈球形片层结构且表面光滑,这赋予其以下独特优点:球状结构有利于实现紧密堆积,从而可制备高密度电极;MCMB的表面光滑和低的比表面积可以减少在充电过程中电极表面副反应的发生,从而降低第一次充电过程中的库仑损失,球形片层结构使Li+可以在球的各个方面插入和放出,解决了石墨类材料由于各向异性过高引起的石墨片层溶胀、塌陷和不能快速大电流充放电的问题[6]。 MCMB是焦油沥青在400~500℃加热成熔融状态时沉淀出的微球,再在700

文档评论(0)

我思故我在 + 关注
实名认证
文档贡献者

部分用户下载打不开,可能是因为word版本过低,用wps打开,然后另存为一个新的,就可以用word打开了

1亿VIP精品文档

相关文档