- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
工业水处理|难降解废水生物电化学系统强化处理的研究进展
2017年我国工业废水排放量约为690亿t,其中难降解废水超过100亿t,主要包括焦化、印染、农药、石油、化工等工业废水,其特点是成分复杂,COD、色度、盐分和毒性难降解物质含量高。
采用传统的生物法处理难降解工业废水难以使其达标排放,而采用物化处理工艺则存在费用高的问题,因此,对该类废水的处理成为污水处理业公认的难题。
生物电化学系统(bioelectrochemical system,BES)是新兴的污水处理及资源回收技术,已证实其对印染、化工、医药、食品加工等工业废水具有很好的处理效果,同时能以氢气、沼气、电能或者中水的形式高效回收资源,是一种结合生物技术和电化学还原/氧化技术优势的耦合系统。该系统阳极和阴极中至少有一个电极会发生微生物催化的氧化/还原反应,在电极上发生有微生物或者微生物代谢产物参与的电子传递过程。近年来,学者们对生物电化学工艺在强化难降解废水处理中的应用开展了大量研究,并在影响因素、处理对象多元化等方面获得重要进展。
笔者在已有研究基础上,对BES强化处理难降解废水的效能进行了综述和总结,分析了电极、外加电压、盐度、电化学活性细菌(electrochemically active bacteria,EAB)等因素对处理效果的影响,讨论了其在偶氮染料废水、硝基芳烃废水、氯酚废水等典型难降解工业废水强化处理中的应用效果,并对其未来发展进行了展望,以期为BES的大规模应用提供参考。
1 生物电化学系统概述及原理
BES是利用微生物的胞外电子转移从底物中获取能量,将生物能转化为电能,从而达到直接利用电能及降解污染物的目的。
该系统结合了生物技术和电化学还原/氧化技术的优势,在阳极产电,同时在阴极降解污染物和合成甲烷、氢气等物质。其本质为EAB通过特定的细胞膜蛋白、细胞结构或可溶解性的氧化还原电子介质实现微生物与固态电极间的电子传递过程。BES主要由4部分组成,即电极、微生物、基质和外电路。
如图 1所示,BES基本构型及原理为附着在阳极上的微生物与溶液中基质(有机物)相互反应产生电子及氧化产物等,产生的电子经外电路传递到阴极,与阴极上的电子受体相结合,生成还原产物。
在此过程中,BES中基质被持续降解,从而在外电路上形成电流,完成生物能转化为电能的过程,从而实现以难降解污染物为电子受体的阴极还原。
BES主要包括微生物燃料电池(microbial fuel cell,MFC)和微生物电解池(microbial electrolysis cell,MEC),以及在此基础上发展而来的微生物脱盐池(microbial desalination cell,MDC)等。
MFC的基本原理是在阳极发生氧化反应而产生电子,产生的电子通过外电路传递到阴极,阴极上的电子受体接受电子被还原,从而利用阴阳两极之间形成的电势差作为输出电压,使得微生物的生物能转化为电能。
MEC与MFC略有不同,MEC阴极的电子受体多为还原电位较低的底物,如难降解污染物等,需通过给予外加电压,促使阴极电势降低到难降解污染物能够发生还原反应的电位。
MEC的基本原理是微生物降解底物所产生的电子经细胞膜传递至阳极,然后在外电路上的电源所提供的电势差作用下到达阴极,与阴极上的电子受体相结合生成氢气、甲烷等还原产物。
而MDC的构造是在MFC的阴极室和阳极室之间加入阴阳离子交换膜,从而产生脱盐室。其原理是附着在阳极上的微生物氧化有机物产生电子,其经外电路传递至阴极,在阴阳极室间形成电场,脱盐室内的钠离子通过阳离子交换膜迁入阴极室,而氯离子经阴离子交换膜迁入阳极室,以达到脱盐的效果。
2 生物电化学系统处理效能影响因素
2.1 电极
对于BES,电极的选取是核心。应选取具有良好的导电性、稳定性、生物相容性以及比表面积大的电极。
目前,常采用碳材料作为电极,常用的有碳纸、碳布、碳毡、碳纤维刷等。华琮歆采用石墨颗粒及石墨毡作为BES电极处理废水中的硝基酚类污染物(4-硝基酚、2,4-二硝基酚、2,4,6-三硝基酚),发现石墨颗粒作为电极的效能优于石墨毡;同时研究表明,硝基酚的还原效果受电极材料的比表面积、内阻等因素影响,比表面积越大,内阻越小,相应的硝基酚还原效果越好。
碳基电极存在导电性差等问题,由此引入纳米粒子以改善其表面性能。M. H. Omar等在碳布表面沉积Fe/Fe2O3纳米粒子制成一种新型MFC电极,并用于处理实际工业废水。
研究表明,相比于碳布电极,这种新型电极的表面润湿性和微生物在电极表面的黏附性均有所提高,产电功率提高了385%,COD去除率由60%左右提高至88.5%。相较于碳基电极,不锈钢电极具有良好的电化学稳定性与经济性,同样可作为BES电极。Hongcheng Wang等采用一种折叠
文档评论(0)