网站大量收购闲置独家精品文档,联系QQ:2885784924

样本容量确定.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PAGE PAGE 16 第三节 样本容量的确定 在区间估计中我们发现,对于某一个总体的参数进行估计时,在样本数目一定的条件下,要提高估计结果的可靠性,就需要扩大置信区间,这就要增加估计中的误差,减少了估计的实际意义。如果要减少估计的误差,就要缩短置信区间,但这样就必须要降低估计的可靠性。可见在样本数目一定的条件下,估计的精确性和估计的可靠性不能两全其美。既要提高估计的精确性,减少误差,又要提高估计可靠性的办法就是增加样本容量。但是增加样本就要同时增加抽样调查的成本,同时又可能延误时间。因此就需要研究能够满足对估计的可靠性和精确性要求的最小样本数问题。 一、均值估计问题中,样本大小的决定 在总体均值的估计问题中,要决定必要的样本大小,必须先明确如下三个问题: 1. 要规定允许的估计误差的大小,即允许的估计值与实际值之间的最大偏离值是多少,实际上也就是估计区间的大小, 2. 规定置信度,即估计所要求达到的可靠性,也就是实际的抽样误差不超过所规定的误差的可信度。 3. 要明确总体的标准差,即要求了解总体的分布情况。总体的标准差小,只要抽较少的样本就能满足对估计精确度和可靠性的要求,若总体标准差大,就必须抽取较多的样本才能达到对估计精确度和可靠性的要求。 设总体标准差为,样本均值的标准差为。估计的置信度为,于是可以相应地得到置信系数。于是对总体均值的估计可由下式得到: 上式中的实际上就表示估计所允许的最大误差,我们用Δ表示,于是根据上式有    则  由此只要规定了允许误差的大小Δ和总体的标准差σ,由置信度查表得到相应的,代入公式,求得满足要求的最小整数就是满足估计误差不大于Δ和置信度为的要求的最少样本数。 上述公式适用于重复抽样或无限总体不放回抽样时的情形。但对于有限总体不放回抽样的情形,公式变为如下的形式:    由此可求得满足上式要求的最小的整数为  。 其中:Δ为允许最大误差, 为有限总体的个体数, 为置信度水平, 为根据置信度水平查表得到的置信系数。 二、比例估计问题中,样本大小的决定 关于总体比例的估计问题中,要决定样本大小首先也要明确关于均值的估计问题中同样的三个问题: 1. 允许误差的大小,即规定估计值与实际值的最大偏离值。 2. 规定置信度,即估计所要求达到的可信度。 3. 对总体比例的事先估计值,即大致的或估计的总体比例是多少。 与均值的估计问题完全平行地,我们可以得到以下的结果。 对于重复抽样或无限总体不重复(放回)抽样时的情形为  但对于有限总体不放回抽样的情形,公式变为如下的形式: 第四节 假设检验 一、假设检验的基本原理   假设总体的均值为某一个值,为了检验这一假设的正确性,我们收集样本的数据,计算出假设值与样本均值之间的差异,然后根据差异的大小来判断所作假设的正确性,这就是假设检验。直观地,我们知道差异越小,对于总体均值的假设正确的可能性就愈大。差异越大,对总体均值的假设正确的可能性就愈小。 然而在多数情况下,对总体参数的假设值与样本统计量之间的差异既不至于大到显而易见,应该拒绝假设,也不至于小到可以完全肯定,应该接受假设的程度。于是就不能简单地决定接受或拒绝所作的假设,而需要判断所作的假设在多大的程度上是正确的。于是就需要研究假设和判断假设是否正确的程度。 (一)假设检验中的假设   假设检验中通常把所要检验的假设称作原假设或零假设,记作。例如要检验总体均值μ=100这个假设是否正确,就表示为:μ=100。如果样本所提供的信息无法证明原假设成立,则我们就拒绝原假设。此时,我们只能接受另外备选的假设了,称之为备择假设,我们以表示备择假设。备择假设可以有三种形式,例如,在原假设:μ=100的条件下,备择假设可以是:   :μ100。这表示备择假设是总体的均值不等于100。或者是   :μ100。这表示备择假设是总体的均值大于100。或者是   :μ100。这表示备择假设是总体的均值小于100。   上述备择假设的选择与检验的要求是密切相关的。我们根据假设检验的目的要求不同又把假设检验分为双侧检验和单侧检验。   如果样本均值高于或低于假设的总体均值很显著时都拒绝原假设,我们称作双侧检验。在双侧检验时有左右两个拒绝区域。当原假设是::μ=100,备择假设是::μ100时就必须使用双侧检验。 若只有在样本的均值高于(或低于)假设的总体均值很显著时才拒绝原假设,这就称作单侧检验。单侧检验只有一个拒绝区域。若假设检验只有在样本均值高于假设的总体均值很显著时才拒绝原假设,这种假设

文档评论(0)

anma + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档