网站大量收购独家精品文档,联系QQ:2885784924

针对泰安市遥感影像地物分类方法比较.docxVIP

针对泰安市遥感影像地物分类方法比较.docx

  1. 1、本文档共43页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
摘要 遥感影像的分类识别简单来说就是根据不同地物光谱特征的差异在遥感影像上分类并判读出具体地物,从而将地物的实际分布转换为可被计算机应用的影像数据。 传统方法进行分类是运用某种具体方法基于光谱特征进行地物识别分类识别,由于单一方法的准确性有限,对于不同对象的差异性明显,很难达到较高的精度。本文研究的具体内容是应用泰安市lansat8遥感影像数据,对其进行多种分类方法分类。针对泰安地区将所有地物类别分为五种地物类别。通过精度对比结果发现最小距离法的精度最高,达到64.4934% ,但是对于河流水域分类精度只有33.60%。支持向量机分类方法虽然总体分类精度较低,但是对河流水域的分类精度达到了最高的78.48 %。为了使各种方法进行优势互补,在此进行单一分类器分类后使用多分类器并行的方式分类,分类结果显示多分类器融合后各地物分类精度都有了明显提高。通过不断提高分类精度,可以协调区域内发展,对区域变化进行科学预测。 关键字:遥感影像分类、ENVI;分类精度;多分类器融合 ABSTRACT The classification and recognition of remote sensing images is simply to classify and interpret specific ground objects on remote sensing images according to the differences of spectral characteristics of different ground objects, so as to convert the actual distribution of ground objects into image data that can be applied by computer. The traditional method is to use a specific method to classify and recognize ground objects based on spectral features. Because of the limited accuracy of a single method, it is difficult to achieve high accuracy because of the obvious differences between different objects. The concrete content of this paper is to use lansat8 remote sensing image data of Taian City to classify them by various classification methods. According to Taian area, all the ground objects are divided into five categories. The results of precision comparison show that the minimum distance method has the highest accuracy of 64.4934%, but the classification accuracy of river waters is only 33.60%. Support vector machine classification method although The overall classification accuracy is low, but the classification accuracy of river waters is the highest 78.48%. In order to complement the advantages of various methods, multiple classifiers are used to classify them in parallel after a single classifier. the classification results show that the classification accuracy of each ground object is improved obviously after the fusion of multiple classifiers. By continuously improving the classification accuracy, we can coordinat

文档评论(0)

文章交流借鉴 + 关注
实名认证
文档贡献者

妙笔如花

1亿VIP精品文档

相关文档