- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
精品 Word 可修改 欢迎下载
必威体育精装版 精品 Word 欢迎下载 可修改
精品 Word 可修改 欢迎下载
TOC \o 1-3 \h \u 一、 引言 3
二、 轧机液压AGC数学模型 3
三、 基于BP神经网络的轧机AGC过程控制 5
(一) 人工神经网络基本思想及其发展 6
(二) 人工神经网络的工作原理 7
(三) 人工神经网络的主要功能特点 8
四、 神经网络辨识 9
(一) 扩展BP神经算法 9
(二) 基于时间序列的动态模型辨识 11
五、 辨识结果 12
(一) 轧制力辨识 12
(二) 液压AGC参数辨识 13
六、 结果检验 14
(一) 模型检验 14
(二) 辨识结果对比 14
七、 结论 15
八、 参考文献: 15
先进过程控制技术在轧机液压领域的应用
摘要: 轧机液压AGC控制过程的力控精度直接影响带钢的组织性能和力学性能,是保证板带质量和板形良好的关键因素。所以对轧机液压AGC的力控制,成为热轧生产中的重要环节,对其过程进行分析和研究具有深远的现实意义。本文以国内某热轧厂轧机液压AGC控制为背景,对如何提高轧机液压AGC控制的力控精度从控制方法上入手进行了较深入系统的研究。在分析液压AGC的组成元件及其动态特性的基础上, 利用神经网络具有逼近任何非线性函数且具有自学习和自适应的能力, 建立基于时间序列的前馈动态模型辨识结构, 应用扩展BP算法对轧机液压AGC力控制系统进行非线性预测, 将预测结果应用最小二乘辨识方法进行线性系统的特征参数辨识, 仿真及实测结果表明此方法行之有效, 为轧机液压AGC的控制提供了新途径。
关键词:自适应辨识;板带轧机;液压AGC;神经网络
Advanced process control technology in the field of rolling mill hydraulic applications
Abstr act: In the process of rolling mill hydraulic AGC control force control precision directly affects the organization performance and mechanics performance of the steel strip, is guarantee the quality of strip and plate shape of the key factors. So the force control of rolling mill hydraulic AGC, become the important link between the hot rolling production, analyzes its process and research has far-reaching practical significance. This paper, taking a warmwalzwerk domestic mill hydraulic AGC control as the background, on how to improve the force control precision of the rolling mill hydraulic AGC control from the control methods of conducted in-depth study of the system. Based on the analysis of dynamic characteristics of hydraulic AGC components and, on the basis of using the neural network has any nonlinear function approximation, and has the ability of self learning and adaptive feedforward dynamic model identification based on time series structure, extend the BP algorithm was applied to rolling mill hydraulic AGC force control system for nonlinear prediction, and the predicted results using least squares ident
文档评论(0)