- 1、本文档共3页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
陶瓷材料的抗热震性的改善与应用
陶瓷材料的抗热震性的改善与应用
陶瓷材料的抗热震性改善与应用
本文总结了陶瓷材料抗热震的理论基础以及抗热震陶瓷材料的分类与应用,基于理论提出了改善陶瓷材料抗热震性的策略,为制作高抗热震陶瓷材料提供了可借鉴的工程技术途径。 关键词:
陶瓷 材料 抗热震性 改善措施 应用 引言:
陶瓷材料因具有极高的熔点、高的化学和物理稳定性及优异的抵抗极端环境的能力而闻名。但陶瓷材料由于其固有的脆性,抗热震性能较差,热冲击是造成陶瓷材料破坏的重要原因。因此,改善陶瓷材料的抗热震性能历来就是陶瓷材料研究的重大课题之一。
1. 陶瓷抗热震性的理论基础
陶瓷抗热震性指陶瓷在温度剧变情况下抵抗热冲击的能力。陶瓷抗热震性能经典理论主要有两种,即Kingery 抗热震断裂理论和Hasselman 抗热展损伤理论和Andersson 等提出一种新模型——压痕淬冷法。
(1) Kingery 基于热弹性理论,提出了抗热震断裂理论。由热震温差引起热应力与材料固有抗拉强度之间的平衡作为抗热震断裂判据,导出抗热震断裂参数: R =
σf (1-μ)
式中:σf 为强度极限,E 为弹性膜量,μ为泊松比,α为热膨胀系数, 根据上式,要使陶瓷材料具有优异抗热震性,需要陶瓷弹性模量低,强度极限高,泊松比低。一些材料R 的经验值见下表。
(2) Hasselman 基于断裂力学理论,从能量观点出发,提出了抗热冲击理论. 分析材料在温度变化下裂纹成核、扩展动态过程。以弹性应变能与断裂表面能之间平衡作为抗热震损伤判据,导出抗热震损伤参数
λ2G 1 R st =(2) 2
式中:E 0是材料无裂纹时的弹性模量,G 为弹性应变能释放率,α为热膨胀系数,R st 大,裂纹不易扩展,热稳定性好。
裂纹长度及强度与热震温差的函数关系
上图为理论上预期的裂纹长度以及材料强度随?T 的变化。假如原有裂纹长度l 0相应的强度为σ0,当?T ?T c ,强度同样连续地降低。这
一结论为很多实验所证实。
下图是直径5mm 的氧化铝杆,加热到不同温度后投入水中急冷,在室温下测得的强度曲线。可以看到与理论预期结果是符合的。
对于一些多孔的低强度材料,例如保温耐火砖,由于原先裂纹尺寸较大,预期有图形式,并不显示出裂纹的动力扩展过程,而只有准静态的扩展过程,这同样也得到了实验的证实。
图。5mm 直径氧化铝杆在不同温度下 图。裂纹长度及强度与温
到水中急冷的强度 度差的关系
(3)Andersson等发展了压痕淬冷模型。在一定厚度与直径圆柱型试样表面中心位置预制一定长度裂纹,再抛出菱形缺口,经反复加载与卸载,产生凹痕,加热到不同温度,快速放人水中淬冷,用光学显微镜测量试样裂纹长度,计算裂纹增长率,以此评价陶瓷抗热震性。此模型与Hasselman 抗热冲击理论(淬冷应力模型) 和Kingery 抗热展断裂理论相比,更简单,试样制备较容易。
2. 改善陶瓷断裂抗热震性的主要措施
陶瓷材料的抗热震性是其力学性能和热学性能的综合表现,因此,一些热学和力学参数,如线胀系数、热导率、弹性模量、断裂能是影响陶瓷抗热震性的主要参数。提高陶瓷材料抗热冲击断裂性能的措施,主要是根据上述抗热冲击断裂因子所涉及的各个性能参数对热稳定性的影响。
(1) 提高材料强度σ,减小弹性模量E ,使σ/E提高。这意味着提高材料的
柔韧性,能吸收较多的弹性应变能而不致开裂,因而提高了热稳定性。热应力是弹性模量的增值函数,由于陶瓷材料的弹性模量比较高,其所产生的热应力也较高。一般弹性模量随原子价的增多和原子半径的减小而提高,因此选择适当的化学组分是控制陶瓷材料弹性模量的一个途径。
(2) 减小材料的线胀系数α。众所周知,固体材料的线胀是由于原子热振动而引起的,晶体中的平衡间距由原子间的势能所决定,温度升高则原子的振动加剧,原子间距的相应扩大就呈现出宏观的线胀。α小的材料,在同样的温差下,产生的热应力小。
(3) 提高材料的热导率λ。λ大的材料传递热量快,使材料内外温差较大的得到缓解、平衡,因而降低了短时间热应力的聚集。热震好的陶瓷材料,一般应具有较高的热导率。Al2O3,MgO ,BeO 等纯氧化物陶瓷的热导率比结构复杂的硅酸盐要高。由于结构复杂的硅酸盐晶界构成连续相,使热导率降低。由于热在陶瓷中的传导主要是依靠晶格振动,因而硬度高的SiC 陶瓷由于晶格振动速度大,其热导率较高。
3. 抗热震陶瓷的分类及应用
根据陶瓷材料晶相的不同,抗热震陶瓷可以分为氮化物、碳化物、氧化物等。由于这些
您可能关注的文档
最近下载
- 年会语言类节目搞笑朗诵《我爱上班》表演.pptx
- 《马克思主义基本原理概论》教案12 资本主义的本质及规律.doc VIP
- 55种语言汉译译音表-世界人名翻译大辞典.pdf
- 我们的母亲叫中国:.pptx VIP
- 1.6+隋唐时期的中外文化交流++课件++2024-2025学年统编版七年级历史下册+.pptx VIP
- 水稻绿色高产高效创建服务 投标方案(技术方案).docx
- 医用氧自检检查记录表.pdf
- 2024辽宁沈阳市文体旅产业发展集团有限公司中层岗位招聘5人笔试备考试题及答案解析.docx
- 《国际经济法学》(第二版)课后思考题答案.pdf
- 55个单病种(术种)管理指标质量控制标准(第二部分).xlsx
文档评论(0)