网站大量收购闲置独家精品文档,联系QQ:2885784924

Chapter11林子雨大数据技术原理与应用大数据在互联网领域的应用(年1月29日版本)32.pptx

Chapter11林子雨大数据技术原理与应用大数据在互联网领域的应用(年1月29日版本)32.pptx

  1. 1、本文档共33页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《大数据技术原理与应用》/post/bigdata温馨提示:编辑幻灯片母版,可以修改每页PPT的厦大校徽和底部文字第11章 大数据在互联网领域的应用 (PPT版本号:2016年1月29日版本) 厦门大学计算机科学系2016年版提纲11.1 推荐系统概述11.2 推荐算法 – 协同过滤11.3 协同过滤实践 – 电影推荐系统本PPT是如下教材的配套讲义:21世纪高等教育计算机规划教材《大数据技术原理与应用——概念、存储、处理、分析与应用》 (2015年6月第1版)厦门大学 林子雨 编著,人民邮电出版社ISBN:978-7-115-39287-9欢迎访问《大数据技术原理与应用》教材官方网站:/post/bigdata11.1 推荐系统概述11.1.1 什么是推荐系统11.1.2 长尾理论11.1.3 推荐方法11.1.4 推荐系统模型11.1.5 推荐系统的应用11.1.1 什么是推荐系统互联网的飞速发展使我们进入了信息过载的时代,有哪些信誉好的足球投注网站引擎可以帮助我们查找内容,但只能解决明确的需求为了让用户从海量信息中高效地获得自己所需的信息,推荐系统应运而生。推荐系统是大数据在互联网领域的典型应用,它可以通过分析用户的历史记录来了解用户的喜好,从而主动为用户推荐其感兴趣的信息,满足用户的个性化推荐需求11.1.2 长尾理论“长尾”概念于2004年提出,用来描述以亚马逊为代表的电子商务网站的商业和经济模式电子商务网站销售种类繁多,虽然绝大多数商品都不热门,但这些不热门的商品总数量极其庞大,所累计的总销售额将是一个可观的数字,也许会超过热门商品所带来的销售额因此,可以通过发掘长尾商品并推荐给感兴趣的用户来提高销售额。这需要通过个性化推荐来实现11.1.2 长尾理论热门推荐是常用的推荐方式,广泛应用于各类网站中,如热门排行榜。但热门推荐的主要缺陷在于推荐的范围有限,所推荐的内容在一定时期内也相对固定个性化推荐可通过推荐系统来实现。推荐系统通过发掘用户的行为记录,找到用户的个性化需求,发现用户潜在的消费倾向,从而将长尾商品准确地推荐给需要它的用户,进而提升销量,实现用户与商家的双赢11.1.3 推荐方法推荐系统的本质是建立用户与物品的联系,根据推荐算法的不同,推荐方法包括如下几类:专家推荐:人工推荐,由资深的专业人士来进行物品的筛选和推荐,需要较多的人力成本基于统计的推荐:基于统计信息的推荐(如热门推荐),易于实现,但对用户个性化偏好的描述能力较弱基于内容的推荐:通过机器学习的方法去描述内容的特征,并基于内容的特征来发现与之相似的内容协同过滤推荐:应用最早和最为成功的推荐方法之一,利用与目标用户相似的用户已有的商品评价信息,来预测目标用户对特定商品的喜好程度混合推荐:结合多种推荐算法来提升推荐效果11.1.4 推荐系统模型一个完整的推荐系统通常包括3个组成模块:用户建模模块、推荐对象建模模块、推荐算法模块:用户建模模块:对用户进行建模,根据用户行为数据和用户属性数据来分析用户的兴趣和需求推荐对象建模模块:根据对象数据对推荐对象进行建模推荐算法模块:基于用户特征和物品特征,采用推荐算法计算得到用户可能感兴趣的对象,并根据推荐场景对推荐结果进行一定调整,将推荐结果最终展示给用户图11-1 推荐系统基本架构 11.1.5 推荐系统的应用目前在推荐系统已广泛应用于电子商务、在线视频、在线音乐、社交网络等各类网站和应用中如亚马逊网站利用用户的浏览历史记录来为用户推荐商品,推荐的主要是用户未浏览过,但可能感兴趣、有潜在购买可能性的商品图11-2 亚马逊网站根据用户的浏览记录来推荐商品11.1.5 推荐系统的应用推荐系统在在线音乐应用中也逐渐发挥作用。音乐相比于电影数量更为庞大,个人口味偏向也更为明显,仅依靠热门推荐是远远不够的虾米音乐网根据用户的音乐收藏记录来分析用户的音乐偏好,以进行推荐。例如,推荐同一风格的歌曲,或是推荐同一歌手的其他歌曲图11-3 虾米音乐网根据用户的音乐收藏来推荐歌曲11.2 协同过滤推荐技术从被提出到现在已有十余年,在多年的发展历程中诞生了很多新的推荐算法。协同过滤作为最早、最知名的推荐算法,不仅在学术界得到了深入研究,而且至今在业界仍有广泛的应用协同过滤可分为基于用户的协同过滤和基于物品的协同过滤11.2.1 基于用户的协同过滤(UserCF)11.2.2 基于物品的协同过滤(ItemCF)11.2.3 UserCF算法和ItemCF算法的对比11.2.1 基于用户的协同过滤(UserCF)基于用户的协同过滤算法(简称UserCF算法)在1992年被提出,是推荐系统中最古老的算法UserCF算法符合人们对于“趣味相投”的认知,即兴趣相似的用户往往有相同的物品喜好:当目标用户需要个性化推荐时,可以先找到和目标用户有相

文档评论(0)

职教魏老师 + 关注
官方认证
服务提供商

专注于研究生产单招、专升本试卷,可定制

版权声明书
用户编号:8005017062000015
认证主体莲池区远卓互联网技术工作室
IP属地河北
统一社会信用代码/组织机构代码
92130606MA0G1JGM00

1亿VIP精品文档

相关文档