网站大量收购闲置独家精品文档,联系QQ:2885784924

matlab下模糊控制器设计步骤.docxVIP

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
matlab下模糊控制器设计步骤 matlab下模糊控制器设计步骤 下面将根据模糊控制器设计步骤,一步步利用Matlab工具箱设计模糊控制器。 Matlab模糊控制工具箱为模糊控制器的设计提供了一种非常便捷的途径,通过它我们不需要进行复杂的模糊化、模糊推理及反模糊化运算,只需要设定相应参数,就可以很快得到我们所需要的控制器,而且修改也非常方便。 首先我们在Matlab的命令窗口(command window)中输入fuzzy,回车就会出来这样一个窗口。 下面我们都是在这样一个窗口中进行模糊控制器的设计。 1.确定模糊控制器结构:即根据具体的系统确定输入、输出量。 这里我们可以选取标准的二维控制结构,即输入为误差e和误差变化ec,输出为控制量u。注意这里的变量还都是精确量。相应的模糊量为E,EC和U,我们可以选择增加输入(Add Variable)来实现双入单出控制结构。 2.输入输出变量的模糊化:即把输入输出的精确量转化为对应语言变量的模糊集合。 首先我们要确定描述输入输出变量语言值的模糊子集,如{NB,NM,NS,ZO,PS,PM,PB},并设置输入输出变量的论域,例如我们可以设置误差E(此时为模糊量)、误差变化EC、控制量U的论域均为{-3,-2,-1,0,1,2,3};然后我们为模糊语言变量选取相应的隶属度函数。 在模糊控制工具箱中,我们在Member Function Edit中即可完成这些步骤。首先我们打开Member Function Edit窗口 然后分别对输入输出变量定义论域范围,添加隶属函数,以E为例,设置论域范围为[-3 3],添加隶属函数的个数为7. 然后根据设计要求分别对这些隶属函数进行修改,包括对应的语言变量,隶属函数类型。 3.模糊推理决策算法设计:即根据模糊控制规则进行模糊推理,并决策出模糊输出量。 首先要确定模糊规则,即专家经验。对于我们这个二维控制结构以及相应的输入模糊集,我们可以制定49条模糊控制规则(一般来说,这些规则都是现成的,很多教科书上都有),如图。 制定完之后,会形成一个模糊控制规则矩阵,然后根据模糊输入量按照相应的模糊推理算法完成计算,并决策出模糊输出量。 4.对输出模糊量的解模糊:模糊控制器的输出量是一个模糊集合,通过反模糊化方法判决出一个确切的精确量,凡模糊化方法很多,我们这里选取重心法。 5.然后Export to disk,即可得到一个.fis文件,这就是你所设计的模糊控制器。 下面我们检验一下,看看我们的控制器到底怎么样。以一个简单的电机控制为例,我们在Simulink中建立了它的模糊控制系统如下: 在用这个控制器之前,需要用readfis指令将fuzzy1.fis加载到matlab的工作空间,比如我们用这样的指令:myFLC=readfis(‘fuzzy1.fis’);就创建了一个叫myFLC的结构体到工作空间,并在fuzzy logic controller中参数设为:myFLC。 可以看到,在模糊控制器的输入和输出均有一个比例系数,我们叫它量化因子,它反映的是模糊论域范围与实际范围之间的比例关系,例如,模糊控制器输入输出 的论域范围均为[-3,3],而实际误差的范围是[-10,10],误差变化率范围是[-100,100],控制量的范围是[-24,24],那么我们就可以算出量化因子分别为0.3,0.03, 8。量化因子的选取对于模糊控制器的控制效果有很大的影响,因此要根据实际情况认真选取哦。 好,现在我们可以设定仿真步长,比如定步长的10ms,就可以运行了。 运行后,产生这样一个错误: MinMax blocks do not accept boolean signals. The input signal(s) of block test_fuzzy/Fuzzy Logic Controller/FIS Wizard/Defuzzification1/Max (COA) must be one of the MATLAB uint8, uint16, uint32, int8, int16, int32, single, or double data types 我想很多朋友做模糊控制的时候都会遇到这个情况。没关系,这里提供两个解决办法: 1.直接在Defuzzification1这个模块中的那个比较环节后加入数据类型转换模块,将boolean转化为double型,或者双击那个比较模块,选中show additional parameters,将输出数据类型改为spe

文档评论(0)

软件开发 + 关注
官方认证
服务提供商

十余年的软件行业耕耘,可承接各类需求

认证主体深圳鼎云文化有限公司
IP属地广东
统一社会信用代码/组织机构代码
91440300MA5G24KH9F

1亿VIP精品文档

相关文档