网站大量收购闲置独家精品文档,联系QQ:2885784924

多元线性回归模型的统计检验方法.pptx

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
§2.4 多元线性回归模型的统计检验Statistical Test of Multiple Linear Regression Model 一、拟合优度检验二、方程显著性检验三、变量显著性检验说 明由计量经济模型的数理统计理论要求的以多元线性模型为例将参数估计量和预测值的区间检验单独列为一节,在一些教科书中也将它们放在统计检验中包含拟合优度检验、总体显著性检验、变量显著性检验、偏回归系数约束检验、模型对时间或截面个体的稳定性检验等一、拟合优度检验Testing the Simulation Level1、概念检验模型对样本观测值的拟合程度。 通过构造一个可以表征拟合程度的统计量来实现。问题:采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要检验拟合程度?答案:选择合适的估计方法所保证的最好拟合,是同一个问题内部的比较;拟合优度检验结果所表示的优劣是不同问题之间的比较。 2、总体平方和、残差平方和和回归平方和 定义TSS为总体平方和(Total Sum of Squares),反映样本观测值总体离差的大小;ESS为回归平方和(Explained Sum of Squares),反映由模型中解释变量所解释的那部分离差的大小;RSS为残差平方和(Residual Sum of Squares),反映样本观测值与估计值偏离的大小,也是模型中解释变量未解释的那部分离差的大小。 既然ESS反映样本观测值与估计值偏离的大小,可否直接用它作为拟合优度检验的统计量? 不行 统计量必须是相对量TSS、ESS、RSS之间的关系 TSS=RSS+ESS3、一个有趣的现象矛盾吗?可能吗?关键是在TSS=RSS+ESS的推导过程中应用了一组矩条件 矩条件在大样本下成立,只有1个样本时肯定不成立,在样本足够大时近似成立 理解教材中关于TSS=RSS+ESS的推导过程4、拟合优度检验统计量:可决系数r2和调整后的可决系数R2可决系数r2 模型与样本观测值完全拟合时, r2=1。 该统计量越接近于1,模型的拟合优度越高。问题: 要使得模型拟合得好,就必须增加解释变量; 增加解释变量必定使得自由度减少。 调整的可决系数R2为什么以R2作为检验统计量避免片面增加解释变量的倾向? R2多大才算通过拟合优度检验?在应用软件中,可决系数r2和调整后的可决系数R2的计算是自动完成的在消费模型中r2=0.999773R2=0.999739二、方程显著性检验Testing the Overall Significance1、关于假设检验假设检验是统计推断的一个主要内容,它的基本任务是根据样本所提供的信息,对未知总体分布的某些方面的假设作出合理的判断。假设检验的程序是,先根据实际问题的要求提出一个论断,称为统计假设;然后根据样本的有关信息,对的真伪进行判断,作出拒绝或接受的决策。 假设检验的基本思想是概率性质的反证法。概率性质的反证法的根据是小概率事件原理,该原理认为“小概率事件在一次试验中几乎是不可能发生的”。 2、方程的显著性检验 对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。用以进行方程的显著性检验的方法主要有三种:F检验、t检验、r检验。它们的区别在于构造的统计量不同,即设计的“事件”不同。应用最为普遍的F检验。 3、方程显著性的F检验方程显著性的F检验F检验的思想来自于总离差平方和的分解式: TSS=ESS+RSS由于回归平方和ESS是解释变量X联合体对被解释变量Y的线性作用的结果,所以,如果ESS/RSS的比值较大,则X的联合体对Y的解释程度高,可认为总体存在线性关系,反之总体上可能不存在线性关系。因此,可通过该比值的大小对总体线性关系进行推断。进一步根据数理统计学中的定义,如果构造一个统计量 则该统计量服从自由度为(n-k-1)的F分布。 在消费模型中,k=2,n=16,给定α=0.01,查得F0.01(2,13)=3.80,而F=28682.513.80,所以该线性模型在0.99的水平下显著成立。 关于拟合优度检验与方程显著性检验关系的讨论 可见,F与R2同向变化:当R2 =0时,F=0;当R2=时,F为无穷大;R2越大,F值也越大。回答前面的问题: R2多大才算通过拟合优度检验? 在消费模型中, R20.28→F3.80→该线性模型在0.99的水平下显著成立。 有许多著名的模型, R2小于 0.5,支持了重要的结论,例如收入差距的倒U型规律。 不要片面追求拟合优度。三、变量显著性检验Testing the Individual Significance1、变量显著性检验 对于多元线性回归模型,方程的总体线性关系是显著的,并不能说明每个解释变量对被解释变量的影响都是显著的。 因此,必须对每

文档评论(0)

老师驿站 + 关注
官方认证
内容提供者

专业做教案,有问题私聊我

认证主体莲池区卓方网络服务部
IP属地河北
统一社会信用代码/组织机构代码
92130606MA0GFXTU34

1亿VIP精品文档

相关文档