- 1、本文档共14页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Hadoop Superset
Hadoop平台可视化展示工具Superset
平台可视化展示工具
Apache Superset (incubating)
Apache Superset (incubating)
Apache Superset (incubating) is a modern, enterprise-ready business intelligence web application
Apache Superset (incubating) is a modern, enterprise-ready business intelligence web application
Overview
Overview
Features
Features
A rich set of data visualizations
• A rich set of data visualizations
•
An easy-to-use interface for e ploring and visualizing data
• An easy-to-use interface for e ploring and visualizing data
•
Create and share dashboards
• Create and share dashboards
•
Enterprise-ready authentication with integration with major authentication providers (database,
• Enterprise-ready authentication with integration with major authentication providers (database,
•
OpenID, LDAP, OAuth REMOTE_USER through Flask AppBuilder)
OpenID, LDAP, OAuth REMOTE_USER through Flask AppBuilder)
An e tensible, high-granularity security/permission model allowing intricate rules on who can
• An e tensible, high-granularity security/permission model allowing intricate rules on who can
•
access individual features and the dataset
access individual features and the dataset
A simple semantic layer, allowing users to control how data sources are displayed in the UI by
• A simple semantic layer, allowing users to control how data sources are displayed in the UI by
•
defining which fields should show up in which drop-down and which aggregation and function
defining which fields should show up in which drop-down and which aggregation and function
metrics are made available to the user
metrics are made available to the user
Integration with most SQL-speaking RDBMS through SQLAlchemy
• Integration with most SQL-speaking RDBMS through SQLAlchemy
•
Deep integration with Druid.io
• Deep int
文档评论(0)