网站大量收购闲置独家精品文档,联系QQ:2885784924

生成对抗网络.docxVIP

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
生成对抗网络 生成对抗网络 PAGE 生成对抗网络 一、生成对抗网络(GAN) 我们提出了一个通过对抗过程估计生成模型的新框架,在新框架中我们同时训练两个模型:一个用来捕获数据分布的生成模型G,和一个用来估计样本来自训练数据而不是G的概率的判别模型D,G的训练过程是最大化D产生错误的概率。这个框架相当于一个极小化极大的双方博弈。在任意函数G和D的空间中存在唯一的解,其中G恢复训练数据分布,并且D处处都等于1/2。在G和D由多层感知器定义的情况下,整个系统可以用反向传播进行训练。在训练或生成样本期间不需要任何马尔科夫链或展开的近似推理网络。 实验通过对生成的样品进行定性和定量评估来展示这个框架的潜力。 目标函数 GAN的目标函数: 从判别器D的角度,他希望自己可以尽可能的区分真是样本和虚假样本,因此希望D(x)尽可能的大,D(G(x))尽可能的小,即V(D,G)尽可能的大。从生成器的角度看,他希望自己尽可能的骗过D,也就是希望D(G(x))尽可能的大,即V(D,G)尽可能的小。两个模型相对抗,最后达到全局最优。 图中,黑色曲线是真实样本的概率分布函数,绿色曲线是虚假样本的概率分布函数,蓝色曲线是判别器D的输出,它的值越大表示这个样本越有可能是真实样本。最下方的数噪声z,它映射到了x。 我们可以看到,一开始,虽然G(z)和x是在同一个特征空间里的,但它的的差异很大,这时,虽然鉴别真实样本和虚假样本的模型D性能也不强,但它很容易就能把两者区分开来,而随着训练的推进,虚假样本的分布住建与真实样本重合,D虽然也在不断更新,但也已经力不从心了。 最后黑线和绿线几乎重合,模型达到了最优状态,这时D的输出对弈任意样本都是. 最优化问题表达 定义最优化问题的方法由两部分组成,首先我们需要定义判别器D以判别样本是不是从 Pdata(x) 分布中取出来的,因此有: 其中 E 指代取期望。这一项是根据「正类」(即辨别出 x 属于真实数据 data)的对数损失函数而构建的。最大化这一项相当于令判别器 D 在 x 服从于 data 的概率密度时能准确地预测 D(x)=1,即: 另外一项是企图欺骗判别器的生成器 G。该项根据「负类」的对数损失函数而构建,即: 我们定义目标函数为: 对于 D 而言要尽量使公式最大化(识别能力强),而对于 G 又想使之最小(生成的数据接近实际数据)。整个训练是一个迭代过程。其实极小极大化博弈可以分开理解,即在给定 G 的情况下先最大化 V(D,G) 而取 D,然后固定 D,并最小化 V(D,G)而得到 G。其中,给定 G,最大化 V(D,G)评估了 Pg和 Pdata 之间的差异或距离。 最后,我们可以将最优化问题表达为: 理论推导

您可能关注的文档

文档评论(0)

认真对待 + 关注
官方认证
文档贡献者

该用户很懒,什么也没介绍

认证主体惠州市峰海网络信息科技有限公司
IP属地广东
统一社会信用代码/组织机构代码
91441300MA54K6GY5Y

1亿VIP精品文档

相关文档