SPSS因子分析法-内容及案例.docx

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
.. . . ..word.zl. . .word.zl. 实验课:因子分析 实验目的 理解主成分〔因子〕分析的根本原理,熟悉并掌握SPSS 中的主成分〔因子〕分析方法及其主要应用。 因子分析 一、根底理论知识 概念 因子分析〔Factor analysis〕:就是用少数几个因子来描述许多指标或因素之间的联系, 以较少几个因子来反映原资料的大局部信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 主成分分析〔Principal ponent analysis〕:是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样到达了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大局部的信息。 两者关系:主成分分析〔PCA〕和因子分析〔FA〕是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。 特点 〔1〕因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 〔2〕因子变量不是对原始变量的取舍,而是根据原始变量的信息进展重新组构,它能够反映原有变量大局部的信息。 〔3〕因子变量之间不存在显著的线性相关关系,对变量的分析比拟方便,但原始局部变量之间多存在较显著的相关关系。 〔4〕因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丧失最少的原那么下,对高维变量空间进展降维处理〔即通过因子分析或主成分分析〕。显然,在一个低维空间解释系统要比在高维系统容易的多。 类型 根据研究对象的不同,把因子分析分为 R 型和Q 型两种。当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。 但有的因子分析方法兼有R 型和 Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。 分析原理 假定:有n 个地理样本,每个样本共有p 个变量,构成一个n×p 阶的地理数据矩阵 : ? x x ? x ? ? 11 12 ? 1 p ? X ? ?x21 x22 ? ? ? x2 p ? ?? ? ? ? ??x x ? ? n1 n 2 ? x ? ?np ? 当 p 较大时,在 p 维空间中考察问题比拟麻烦。这就需要进展降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。 线性组合:记 x1,x2,…,xP 为原变量指标,z1,z2,…,zm〔m≤p〕为新变量指标 〔主成分〕,那么其线性组合为: ?z ? l x ? l x ??? l x ? 1 11 1 12 2 1 p p 2?z ? l x 2 ? 21 1 ? l x 22 2 ? ??? l x 2 p p z?? ? l x z ? m m1 1 l x m2 2 ??? l x mp p Lij 是原变量在各主成分上的载荷 ?z ? l x ? l x ??? l x ? 1 11 1 12 2 1 p p 2?z ? l x 2 ? 21 1 ? l x 22 2 ? ??? l x 2 p p z?? ? l x z ? m m1 1 l x m2 2 ??? l x mp p 无论是哪一种因子分析方法,其相应的因子解都不是唯一的,主因子解仅仅是无数因子解中之一。 zi 与 zj 相互无关; z1 是 x1,x2,…,xp 的一切线性组合中方差最大者,z2 是与z1 不相关的x1,x2,… 的所有线性组合中方差最大者。那么,新变量指标z1,z2,…分别称为原变量指标的第一, 第二,…主成分。 Z 为因子变量或公共因子,可以理解为在高维空间中互相垂直的m 个坐标轴。 主成分分析实质就是确定原来变量xj〔j=1,2 ,…,p〕在各主成分zi〔i=1,2,…, m〕上的荷载 lij。 从数学上容易知道,从数学上也可以证明,它们分别是相关矩阵的m 个较大的特征值所对应的特征向量。 分析步骤 确定待分析的原有假设干变量是否适合进展因子分析(第一步 ) 因子分析是从众多的原始变量中重构少数几个具有代表意义的因子变量的过程。其潜在的要求:原有变量之间要具有比拟强的相关性。因此,因子分析需要先进展相关分析,计算原始变量之间的相关系数矩阵。如果相关系数矩阵在进展统计检验时,大局部相关系数均小于 0.3 且未通过检验,那么这些原始变量就不太适合进展因子分析。 ? ? r R ? ? r21 ? 11 ? ? ? r 12 r 22 ? r p 2 ? ? ?

文档评论(0)

182****3908 + 关注
实名认证
内容提供者

一切都好,最好每一件事情

1亿VIP精品文档

相关文档