数据封装与解封装实验心得体会.docx

数据封装与解封装实验心得体会.docx

  1. 1、本文档共2页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
在数据分析这门课程当中主要学习了numpy和pandas和数据挖掘的知识,学习过程很充实,也不是很难。 首先学习了Numpy,NumPy(NumericalPython)是Python语言的一个扩展程序库,主要学习了1、矩阵生成,2、矩阵切片,3、轴对换、相乘,4、条件填入(where),5、数据处理。NumPy是一个运行速度非常快的数学库,主要用于数组计算。 在pandas中有两类非常重要的数据结构,即序列Series和数据DataFrame。Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能;DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用。之后学习了数据索引index,包括了通过索引值或索引标签获取数据以及自动化对齐;此外,pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和、均值、最小值、最大值等,我们来具体看看这些函数;在SQL中常见的操作主要是增、删、改、查几个动作,那么pandas能否实现对数据的这几项操作呢?答案是OfCourse!我们发现,不论是删除行还是删除列,都可以通过drop方法实现,只需要设定好删除的轴即可,即调整drop方法中的axis参数。默认该参数为0,表示删除行观测,如果需要删除列变量,则需设置为1。在Excel中有一个非常强大的功能就是数据透视表,通过托拉拽的方式可以迅速的查看数据的聚合情况,这里的聚合可以是计数、求和、均值、标准差等。pandas为我们提供了非常强大的函数pivot_table(),该函数就是实现数据透视表功能的。 数据挖掘的技术与方法相关知识包括:数据挖掘的方法分为描述性与预测性两种。其中描述性数据挖掘指的是分析具有多个属性的数据集,找出潜在的模式和规律,没有因变量。要采用的算法:聚类、关联分析、因子分析、主成分分析等。预测性数据挖掘指的是用一个或多个自变量预测因变量的值。主要算法:决策树、线性回归Logistic回归、支持向量机、神经网络、判别分析。 通过这几天的学习我了解到数据分析的复杂性和难度,想要学好的它,还需要我花费很长时间。

文档评论(0)

小袁 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档