- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
专业班级:2018164 学号:201816406 姓名:张锦渊
实验8: EM算法
一、实验目的
了解EM算法的构建过程和代码实现,应用EM算法解决简单的实际问题。
二、实验准备
安装python和pycharm,了解python基础编程和pycharm使用。
三、实验内容
基于程序中生成的数据,补充完整下面EM算法相关程序,粘贴运行成功的结果截图,认真体会EM算法的实现过程。
数据集:构造数据集(两个高斯分布混合)
数据集长度:1000
----------------------------
import numpy as np
import random
import math
def loadData(mu0, sigma0, mu1, sigma1, alpha0, alpha1):
初始化数据集
这里通过服从高斯分布的随机函数来伪造数据集
:param mu0: 高斯0的均值
:param sigma0: 高斯0的方差
:param mu1: 高斯1的均值
:param sigma1: 高斯1的方差
:param alpha0: 高斯0的系数
:param alpha1: 高斯1的系数
:return: 混合了两个高斯分布的数据
# 定义数据集长度为1000
length = 1000
# 初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来满足alpha的作用
data0 = np.random.normal(mu0, sigma0, int(length * alpha0))
# 第二个高斯分布的数据
data1 = np.random.normal(mu1, sigma1, int(length * alpha1))
# 初始化总数据集
# 两个高斯分布的数据混合后会放在该数据集中返回
dataSet = []
# 将第一个数据集的内容添加进去
dataSet.extend(data0)
# 添加第二个数据集的数据
dataSet.extend(data1)
# 对总的数据集进行打乱(其实不打乱也没事,只不过打乱一下直观上让人感觉已经混合了
# 读者可以将下面这句话屏蔽以后看看效果是否有差别)
random.shuffle(dataSet)
#返回伪造好的数据集
return dataSet
def calcGauss(dataSetArr, mu, sigmod):
根据高斯密度函数计算值
注:在公式中y是一个实数,但是在EM算法中,需要对每个j
都求一次yjk,在本实例中有1000个可观测数据,因此需要计算1000次。考虑到
在E步时进行1000次高斯计算,程序上比较不简洁,因此这里的y是向量,在numpy
的exp中如果exp内部值为向量,则对向量中每个值进行exp,输出仍是向量的形式。
所以使用向量的形式1次计算即可将所有计算结果得出,程序上较为简洁
:param dataSetArr: 可观测数据集
:param mu: 均值
:param sigmod: 方差
:return: 整个可观测数据集的高斯分布密度(向量形式)
# 按照公式得到结果
result = (1 / (math.sqrt(2*math.pi)*sigmod**2)) * np.exp(-1 * (dataSetArr-mu) * (dataSetArr-mu) / (2*sigmod**2))
# 返回结果
return result
def E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1):
EM算法中的E步
依据当前模型参数,计算分模型k对观数据y的响应度
:param dataSetArr: 可观测数据y
:param alpha0: 高斯模型0的系数
:param mu0: 高斯模型0的均值
:param sigmod0: 高斯模型0的方差
:param alpha1: 高斯模型1的系数
:param mu1: 高斯模型1的均值
:param sigmod1: 高斯模型1的方差
您可能关注的文档
最近下载
- 2025年山东外事职业大学单招综合素质考试题库及答案解析.docx
- 计算机网络信息安全必威体育官网网址制度(暂行).doc VIP
- 国际消费中心城市建设年度专题研究报告(2023).pdf
- 医院信息化监理与信息化咨询服务方案.docx VIP
- 信息化运维服务服务质量保障方案.docx
- 2025年新疆机场集团有限责任公司人员招聘笔试备考试题及答案解析.docx
- 2024年市财政局副局长民主生活会对照检查发言材料2篇范文.docx VIP
- 2024-2025年新高考生物专题十九免疫调节-10年高考真题.pdf
- 新人教版三年级下册数学第一单元《练习二》教学课件.pptx
- 信息化项目监理规划.docx VIP
文档评论(0)