- 1、本文档共55页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Adaptive Forecasting where Lt = estimate of level at the end of Period t Tt = estimate of trend at the end of Period t St = estimate of seasonal factor for Period t Ft = forecast of demand for Period t (made Period t – 1 or earlier) Dt = actual demand observed in Period t Et = Ft – Dt = forecast error in Period t Steps in Adaptive Forecasting Initialize Compute initial estimates of level (L0), trend (T0), and seasonal factors (S1,…,Sp) Forecast Forecast demand for period t + 1 Estimate error Compute error Et+1 = Ft+1 – Dt+1 Modify estimates Modify the estimates of level (Lt+1), trend (Tt+1), and seasonal factor (St+p+1), given the error Et+1 Moving Average Used when demand has no observable trend or seasonality Systematic component of demand = level The level in period t is the average demand over the last N periods Lt = (Dt + Dt-1 + … + Dt–N+1) / N Ft+1 = Lt and Ft+n = Lt After observing the demand for period t + 1, revise the estimates Lt+1 = (Dt+1 + Dt + … + Dt-N+2) / N, Ft+2 = Lt+1 Moving Average Example A supermarket has experienced weekly demand of milk of D1 = 120, D2 = 127, D3 = 114, and D4 = 122 gallons over the past four weeks Forecast demand for Period 5 using a four-period moving average What is the forecast error if demand in Period 5 turns out to be 125 gallons? Moving Average Example L4 = (D4 + D3 + D2 + D1)/4 = (122 + 114 + 127 + 120)/4 = 120.75 Forecast demand for Period 5 F5 = L4 = 120.75 gallons Error if demand in Period 5 = 125 gallons E5 = F5 – D5 = 125 – 120.75 = 4.25 Revised demand L5 = (D5 + D4 + D3 + D2)/4 = (125 + 122 + 114 + 127)/4 = 122 Simple Exponential Smoothing Used when demand has no observable trend or seasonality Systematic component of demand = level Initial estimate of level, L0, assumed to be the average of all historical data Simple Exponential Smoothing Revised forecast using smoothing constant 0 a 1 Given data for Periods 1 to n Current forecast Thus Simple Exponential Smoothing Supermarket d
文档评论(0)