- 1、本文档共35页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Sqoop相关知识; 多数使用Hadoop技术处理大数据业务的企业,有大量的数据存储在关系型数据中。由于没有工具支持,Hadoop和关系型数据库之间的数据传输是很困难的事情。传统的应用程序管理系统,即应用程序与使用RDBMS的关系数据库的交互,是产生大数据的来源之一。由RDBMS生成的这种大数据存储在关系数据库结构中的关系数据库服务器中。
当大数据存储和Hadoop生态系统的MapReduce,Hive,HBase等分析器出现时,他们需要一种工具来与关系数据库服务器进行交互,以导入和导出驻留在其中的大数据。Sqoop在Hadoop生态系统中占据一席之地,为关系数据库服务器和Hadoop的HDFS之间提供了可行的交互。; Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。Sqoop由Apache软件基金会提供。;9.2 Sqoop功能应用;9.2.1 Sqoop架构;;;;9.2.2 Sqoop导入原理; JDBC的ResultSet接口提供了一个用户从检查结果中检索记录的游标;这里的ReadFields()方法将用ResultSet中一行数据的列来填充Example对象的字段。Sqoop启动的MapReduce作业用到一个InputFormat,他可以通过JDBC从一个数据库表中读取部分内容。Hadoop提供的DataDriverDBInputFormat能够为几个Map任务对查询结果进行划分。为了获取更好的导入性能,查询会根据一个“划分列”来进行划分的。Sqoop会选择一个合适的列作为划分列(通常是表的主键)。在生成反序列化代码和配置InputFormat之后,Sqoop将作业发送到MapReduce集群。Map任务将执行查询并将ResultSet中的数据反序列化到生成类的实例,这些数据要么直接保存在SequenceFile文件中,要么在写到HDFS之前被转换成分割的文本。Sqoop不需要每次都导入整张表,用户也可以在查询中加入到where子句,以此来限定需要导入的记录:Sqoop –query SQL。在向HDFS导入数据时,重要的是要确保访问的是数据源的一致性快照。从一个数据库中并行读取数据的Map任务分别运行在不同的进程中。因此,他们不能共享一个数据库任务。保证一致性的最好方法就是在导入时不允许运行任何进行对表中现有数据进行更新。;; Sqoop导出功能的架构与其导入功能非常相似,在执行导出操作之前,Sqoop会根据数据库连接字符串来选择一个导出方法。一般为JDBC。然后,Sqoop会根据目标表的定义生成一个Java类。这个生成的类能够从文本文件中解析记录,并能够向表中插入类型合适的值。接着会启动一个MapReduce作业,从HDFS中读取源数据文件,使用生成的类解析记录,并且执行选定的导出方法。
; 基于JDBC的导出方法会产生一批insert语句,每条语句都会向目标表中插入多条记录。多个单独的线程被用于从HDFS读取数据并与数据库进行通信,以确保涉及不同系统的I/O操作能够尽可能重叠执行。虽然HDFS读取数据的MapReduce作业大多根据所处理文件的数量和大小来选择并行度(Map任务的数量),但Sqoop的导出工具允许用户明确设定任务的数量。由于导出性能会受并行的数据库写入线程数量的影响,所以Sqoop使用combinefileinput类将输入文件分组分配给少数几个map任务去执行。进程的并行特性导致导出操作往往不是原子操作。Sqoop会采用多个并行的任务导出,并且数据库系统使用固定大小的缓冲区来存储事务数据,这时一个任务中的所有操作不可能在一个事务中完成。因此,在导出操作进行过程中,提交过的中间结果都是可见的。在导出过程完成前,不要启动那些使用导出结果的应用程序,否则这些应用会看到不完整的导出结果。更有问题的是,如果任务失败,该任务将从头开始重新导入自己负责的那部分数据,因此可能会插入重复的记录。当前Sqoop还不能避免这种可能性。在启动导出作业前,应当在数据库中设置表的约束(例如,定义一个主键列)以保证数据行的唯一性。
;9.3 下载和解压Sqoop;Sqoop相关发行版本可以通过官网/apache/sqoop/来获取,如下图9-4所示。
;9.4 配置Sqoop环境;(1)创建Sqoop的配置文件sqoop-env.sh。
复制sqoop-env-template.sh模板,并将模板重命名为sqoop-env.sh。
(2)修改sqoop-env.sh文件,添加Hdoop、Hbase、Hive等组件的安装路径。
注意,下面各组件的安装路径需要与实际环境中的安
您可能关注的文档
- 大数据运维技术第1章 Linux操作系统的使用课件.pptx
- 大数据运维技术第2章 Hadoop平台安装课件.pptx
- 大数据运维技术第3章 平台的基础环境配置课件.pptx
- 大数据运维技术第4章 Hadoop文件参数配置课件.pptx
- 大数据运维技术第5章 Hadoop集群运行课件.pptx
- 大数据运维技术第6章 Hive组件安装配置课件.pptx
- 大数据运维技术第7章 HBase组件安装与配置课件.pptx
- 大数据运维技术第8章 ZooKeeper组件安装配置课件.pptx
- 大数据运维技术第10章 Flume组件安装配置课件.pptx
- 大数据运维技术第13章 大数据平台监控命令课件.pptx
文档评论(0)