Media mi elements affecting brand equity A study of the Indian passenger car market分析和总结分析和总结.docx
- 1、本文档共13页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
state-of-the-art machine learning approach known as support vector regression (SVR) is
introduced to develop a model that predicts consumers? affective responses (CARs) for product form design. First, pairwise adjectives were used to describe the CARs toward product samples. Second, the product form features (PFFs) were examined systematically and then stored them either as continuous or discrete attributes. The adjective evaluation data of consumers were gathered from questionnaires. Finally, prediction models based on different adjectives were constructed using SVR, which trained a series of PFFs and the average CAR rating of all the respondents. The real-coded genetic algorithm (RCGA) was used to determine the optimal training parameters of SVR. The predictive performance of the SVR with RCGA (SVR–RCGA) is compared to that of SVR with 5-fold cross-validation (SVR–5FCV) and a back-propagation neural network (BPNN) with 5-fold cross-validation (BPNN–5FCV). The experimental results using the data sets on mobile phones and electronic scooters show that SVR performs better than BPNN. Moreover, the RCGA for optimizing training parameters for SVR is more convenient for practical usage in product form design than the timeconsuming CV.
Purchase
$ 37.95
Article Outline
Introduction
Theoretical backgrounds
Support vector regression
Prediction model of consumer?s affective responses for product form design
Describing the affective responses of consumer with pairwise adjectives
Representing sparse and mixed product form features
Questionnaire investigation for adjective evaluation
Constructing the support vector regression prediction model
Optimizing training parameters of SVR using real-coded genetic algorithm
Constructing the back-propagation neural network prediction model
Experimental results
Analysis of the optimization process using RCGA
Comparison
Comparison of predictive performance for different kernel functions
Comparison of predictive performance for SVR–RCGA, S
文档评论(0)