小样本下基于特征融合的FFCNN-SVM迁移学习故障诊断方法.pdfVIP

小样本下基于特征融合的FFCNN-SVM迁移学习故障诊断方法.pdf

  1. 1、本文档共9页,其中可免费阅读8页,需付费10金币后方可阅读剩余内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种小样本下基于特征融合的FFCNN‑SVM迁移学习故障诊断方法。本发明中通过迁移学习中模型迁移的方法,将源域中成熟模型迁移至目标域中,构成目标域的初步模型。之后利用卷积层能够提取图片特征的特性,在初步模型上增加卷积层,之后利用目标域所提供的少量稀缺样本数据训练这个初步模型,待拟合后构成目标域浅层模型。之后利用SVM来替代CNN的全连接层,起到分类的效果。通过轴承故障数据集,能够很好的验证该方法的故障诊断新能。通过实验结果表明,本专利所提出的方法与其他迁移学习方法相比具有较好的故障诊

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 CN 113887586 A (43)申请公布日 2022.01.04 (21)申请号 202111089878.3 (22)申请日 2021.09.17 (71)申请人 杭州电子科技大学 地址

文档评论(0)

知识产权出版社 + 关注
官方认证
服务提供商

提供农业、铸造、给排水、测量、发电等专利信息的免费检索和下载;后续我们还将提供提供专利申请、专利复审、专利交易、专利年费缴纳、专利权恢复等更多专利服务。并持续更新必威体育精装版专利内容,完善相关专利服务,助您在专利查询、专利应用、专利学习查找、专利申请等方面用得开心、用得满意!

认证主体北京中献电子技术开发有限公司
IP属地北京
统一社会信用代码/组织机构代码
91110108102011667U

1亿VIP精品文档

相关文档