- 1、本文档共79页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Lecture 7: AutoEncoders
Artificial Intelligence2Generative Models October 17, 2019
Artificial Intelligence3October 17, 2019Outline?Autoencoders ? Autoencoders ? Denoising Autoencoders ? Contractive Autoencoder ? Deep Autoencoders ? Variational Encoders ? Multimodal Deep Learning
Artificial Intelligence4October 17, 2019Autoencoders???EncoderDecoderParameters
Artificial Intelligence5Autoencoders October 17, 2019
Artificial Intelligence6October 17, 2019Autoencoders?Feed-forward neural network trained to reproduce its input atthe output layer
Artificial Intelligence7Autoencoders October 17, 2019
Artificial Intelligence8Autoencoders October 17, 2019
Artificial Intelligence9Autoencoders October 17, 2019
Artificial Intelligence10October 17, 2019Autoencoders?Loss function for binary inputs ? Cross-entropy error function (reconstruction loss)? Loss function for real-valued inputs ? sum of squared differences (reconstruction loss) ? we use a linear activation function at the output
Artificial Intelligence11Autoencoders October 17, 2019
Artificial Intelligence12Example: MNIST October 17, 2019
Artificial Intelligence13Learned Features October 17, 2019
Artificial Intelligence14October 17, 2019Autoencoders??Autoencoder gives low reconstruction error on textexamples from the same distribution as the trainingexamples, but generally high reconstruction error onsamples randomly chosen from the input spaceAutoencoder is a multi-layer neural network. The onlydifference is that the size of its output layer is the sameas the input layer and the objective function
15October 17, 2019 Artificial IntelligenceOptimality of the Linear Autoencoder ? With nonlinear hidden units, we have a nonlinear generalization of PCA
16October 17, 2019 Artificial IntelligenceUndercomplete Representation?Hidden layer is undercomplete ifsmaller than the input layer(bottleneck layer, e.g.dimensionality reduction): ? hidden layer ‘‘compresses’’ the input ? will compress well only for the t
您可能关注的文档
- U1 What do you do on Sundays优质课示范课公开课优秀课件(精品、完美).pptx
- 2021《民法典》继承编全文ppt解读详细解读亮点解读案例分析课件.pptx
- 路基工程施工安全技术.ppt
- 颅内肿瘤围手术期医疗护理_PPT课件.ppt
- 国际储备精品PPT课件.pptx
- 班主任经验交流课件.pptx
- 跨文化精神病学PPT教案.pptx
- 创业商业融资计划书(精品13).pptx
- 2020年上海旅游市场分析含问卷调研结果(最全).ppt
- 游客投诉现场处置预案.docx
- 精美花卉背景的38女神节PPT模板工作总结汇报.pptx
- 蓝黄配色城市建筑背景的房地产公司年终总结报告PPT模板课件工作总结汇报.pptx
- 骏马高山背景励志风团队凝聚力培训PPT模板课件工作总结汇报.pptx
- 绿色清新水彩叶子教学说课PPT模板课件工作总结汇报.pptx
- 蓝粉配色卡通512国际护士节PPT模板课件工作总结汇报.pptx
- 古典古建筑背景中国风PPT模板工作总结汇报.pptx
- 简洁点线工作总结计划PPT模板工作总结汇报.pptx
- 儿童节端午节校园亲子活动策划PPT模板工作总结汇报.pptx
- 淡雅蓝色小清新通用PPT模板工作总结汇报.pptx
- 写字楼建筑背景的金融公司介绍PPT模板课件工作总结汇报.pptx
文档评论(0)