- 1、本文档共58页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Recommender Systems:Latent Factor ModelsNote to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: /info/1101/1266.htm
The Netflix Prize?2
The Netflix Utility Matrix R1343554553 32225 2113 31480,000 users17,700 movies3Matrix R
Utility Matrix R: Evaluation1343554553 32??? 21?3 ?1Test Data Set?4480,000 users17,700 moviesPredicted ratingTrue rating of user x on item i?Matrix RTraining Data Set
BellKor Recommender SystemThe winner of the Netflix Challenge!Multi-scale modeling of the data:Combine top level, “regional”modeling of the data, with a refined, local view:Global:Overall deviations of users/moviesFactorization: Addressing “regional” effectsCollaborative filtering: Extract local patterns5Global effectsFactorizationCollaborative filtering
Modeling Local Global EffectsGlobal:Mean movie rating: 3.7 starsThe Sixth Sense is 0.5 stars above avg.Joe rates 0.2 stars below avg. ? Baseline estimation: Joe will rate The Sixth Sense 4 starsLocal neighborhood (CF/NN):Joe didn’t like related movie Signs? Final estimate:Joe will rate The Sixth Sense 3.8 stars6
Recap: Collaborative Filtering (CF)Earliest and most popular collaborative filtering methodDerive unknown ratings from those of “similar” movies (item-item variant)Define similarity measure sij of items i and jSelect k-nearest neighbors, compute the rating N(i; x): items most similar to i that were rated by x7sij… similarity of items i and jrxj…rating of user x on item jN(i;x)… set of items similar to item i that were rated by x
Modeling Local Global EffectsIn practice we get better estimates if we model deviations:8μ = overall mean ratingbx = rating deviation of user x = (avg. rating of user x) – μbi =
文档评论(0)