- 1、本文档共9页,其中可免费阅读8页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明提供了一种卷积神经网络非局部信息构建方法,所述方法利用普通的卷积神经网络提取图像的卷积特征;采用自注意力机制计算图像的像素级全局注意力图;通过注意力图构建图像内部的全局图结构;采用图卷积神经网络在图像内部的全局图结构上提取具有非局部性的图特征;采用矩阵乘法将图像的图特征与卷积特征进行融合,并将融合的特征输入到后续网络中。本发明方法不仅仅能提取图像固定感受野下的局部特征,还能够提取非局部特征,减少卷积神经网络在图像特征提取上的误差,显著增加图像生成与分类有效性。
(19)国家知识产权局
(12)发明专利
(10)授权公告号 CN 112329801 B
(45)授权公告日 2022.06.14
(21)申请号 202011411926.1 G06V 10/82 (2022.01)
文档评论(0)