- 1、本文档共17页,其中可免费阅读16页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明涉及数据处理技术领域,具体公开了一种发光材料性质的预测方法、系统、电子设备和存储介质,包括以下步骤:将发光材料的样本数据输入第一深度学习模型中训练,得到第二深度学习模型;获取待预测发光材料的化学结构简式的第一图像数据;对所述第一图像数据进行增强得到第二图像数据;将所述第二图像数据输入到第二深度学习模型中,对发光材料的发光性质进行预测。本发明提供的技术方案通过采用深度学习的人工智能的方法,因此可以自动化地预测发光材料的发光性质,从而大幅度降低了人工验证发光材料性质的成本,进而加速了发光材料研
(19)中华人民共和国国家知识产权局
(12)发明专利
(10)授权公告号 CN 112396134 B
(45)授权公告日 2021.07.02
(21)申请号 202110076244.8 G06N 3/04 (2006.01)
文档评论(0)