- 1、本文档共9页,其中可免费阅读8页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种融合了微观信息的图神经网络推荐系统召回方法,包括以下步骤:S1.收集用户与物品的交互日志;S2.将收集的日志信息导入图数据库,生成拓扑图;S3.将收集的日志信息导入Python进行图神经网络学习。本发明提出了一种融合了微观信息的推荐召回方法,并将微观信息与图神经网络结合,作为图神经网络的边信息进行训练,提升了图网络中用户表征的精准度,更精准的找到相似用户,以此提升推荐系统召回的准确性,可丰富网络信息提升推荐召回效果;每类行为都有对应的微观信息,如将类似的微观信息加入到多源异构网络
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 112380447 A
(43)申请公布日 2021.02.19
(21)申请号 202011390749.3
(22)申请日 2020.12.02
(71)申请人 天翼电子商务有限公司
文档评论(0)