- 1、本文档共27页,其中可免费阅读26页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种基于小样本学习的服务器运行网络流量异常数据检测方法,该方法首先通过对网络流量出现的频次筛选切分出小样本训练数据,然后对小样本训练数据添加异常类型标记;带有标记的异常网络浏览数据采用CNN方法进行学习获得小样本异常元素;最后对小样本异常元素进行相似度和流量概率计算以此表征出样本是否为异常。采用网络流量出现频次的筛选方式用来解决服务器运行期间出现的异常网络流量数据与正常网络流量数据相差巨大的问题。本发明异常检测方法可以更好地应用于复杂多变的服务器所处的网络服务环境。
(19)中华人民共和国国家知识产权局
(12)发明专利
(10)授权公告号 CN 112565301 B
(45)授权公告日 2021.08.31
(21)申请号 202011569465.0 G06N 3/04 (2006.01)
文档评论(0)