哪些因素导致乳腺癌患者死亡风险增加?癌症基因组(TCGA)数据分析库生存分析.docx

哪些因素导致乳腺癌患者死亡风险增加?癌症基因组(TCGA)数据分析库生存分析.docx

此“医疗卫生”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE PAGE 1 What factors contribute to the increased risk of death in breast cancer patients? Survival analysis of the Cancer Genome Analysis (TCGA) database Content TOC \o 1-3 \h \u 11849 1 Introduction 2 20045 2 Data and Methods 3 7815 2.1 Data Source 3 12218 2.2 Descriptive Statistics 4 32366 2.3 Methods 5 13212 3 Analysis 5 30624 3.1 Estimation and Analysis of Cox Regression Model 5 27289 3.2 Diagnosis of Cox Regression Model 7 22418 4 Conclusion 8 30252 Reference 10 1 Introduction In order to explore the correlation between patient clinical test data and disease progression, the main methods of analysis used are linear regression, logistic regression and mixed-effects linear models. These methods allow for the selection of influences on clinical data related to disease progression and the determination of the magnitude of the influence on disease progression (Hubbard et al., 2010). However, these methods only consider the relationship between patient clinical examination information and disease progression and do not consider the impact of patient survival time on disease progression (Zhao et al., 2011). Survival time is the time taken for an event to change from one state to another. Where the event can be whether the patient dies, whether the disease progresses, etc., the time taken for such event state changes is collectively referred to as survival time. Survival analysis methods are beginning to be applied to clinical medicine data in order to allow for the integration of patient survival time and patient clinical data to evaluate disease progression (Casulo et al., 2015). ). In contrast to several other commonly used methods, survival analysis takes into account the impact of patient survival time on disease progression and helps physicians to understand how patients progress over time. Survival analysis is a method of statistical analysis that combines the outcome of an event with the survival time experienced for that outcome

文档评论(0)

OriginalEnglish + 关注
实名认证
内容提供者

纯正英文essay,绝对原创未发表,欢迎各位同学借鉴使用。

1亿VIP精品文档

相关文档