- 1、本文档共34页,其中可免费阅读33页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明提出了一种基于图神经网络和胶囊网络的链路预测方法,首先,使用GNN对网络进行表示学习,生成相应的节点特征;其次,通过本发明专利设计的转换块,将学习到节点特征转换成节点对特征图(Edgefeaturemap),从而将链路预测问题转换为图分类问题;第三,借助CapsNet对节点对特征图进行特征表示学习,从不同方面捕获节点对的属性以用于图分类;最后,分别在6个不具有节点属性与3个包含节点属性的网络上进行了广泛地评估,并分析了提出的GCCL方法的可行性与有效性。实验结果表明:不仅在包含节点属性
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 112749791 A
(43)申请公布日 2021.05.04
(21)申请号 202110088562.6
(22)申请日 2021.01.22
(71)申请人 重庆理工大学
地址
文档评论(0)