- 1、本文档共9页,其中可免费阅读8页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种基于分块梯度加权的木材图像自动识别方法,包括预处理木材横截面图像;分块处理所述木材横截面图像;通过卷积神经网络模型训练分分块后的子图像;从所述木材横截面图像边缘到中心采用不同的梯度值作为不同子区域图像分类得分的权重,并加大中心区域在整个木材横截面图像分类得分中所占的比重,将加权得分转换为最终的概率值。本发明提供的技术方案通过分块处理图像,能够提取更加精细的图像特征,提高木材的识别准确率,同时采用梯度加权法增强了模型的鲁棒性,提高了模型的容错率和泛化能力。
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 112767387 A
(43)申请公布日 2021.05.07
(21)申请号 202110134275.4 G06T 7/90 (2017.01)
文档评论(0)