- 1、本文档共30页,其中可免费阅读29页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本申请提供了一种实体识别方法、装置、设备及存储介质,该方法包括:获取原始威胁情报文本;针对每一原始威胁情报文本,按照分词所属实体的实体类型,对该原始威胁情报文本中的每一个分词进行标记,得到训练样本;将训练样本输入实体识别模型,利用该训练样本中的每一个分词以及该分词对应的所述实体标记,对该实体识别模型进行训练,得到训练好的实体识别模型,其中,实体识别模型在训练过程中使用的损失函数用于减小所属实体标记相同的分词之间的空间距离以及增大所属实体标记不同的分词之间的空间距离;将待识别的威胁情报文本输入训练
(19)国家知识产权局
(12)发明专利
(10)授权公告号 CN 112926327 B
(45)授权公告日 2022.05.20
(21)申请号 202110230354.5 (51)Int.Cl.
文档评论(0)