- 1、本文档共8页,其中可免费阅读7页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种基于熵稳定约束的自动数据降维方法,包括以下步骤:步骤1,监测训练过程中网络输入层、隐含层和输出层的熵分布特征;步骤2,依据网络学习目的灵活地组合待分析熵分布特征匹配差异;步骤3,将匹配差异作为惩罚项加入网络整体损失函数中或是特异网络层的梯度项,而后经过多轮迭代后完成数据的降维,以用于后续分析。本发明的优点是:通过将不同神经网络层之间的熵匹配差异作为惩罚项,加入网络的整体损失函数中或是特异网络层的梯度项,达到对网络迭代过程中高维数据内在结构的保持的目的,且提取到的低维数据重建误差更
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 112966753 A
(43)申请公布日 2021.06.15
(21)申请号 202110257323.9
(22)申请日 2021.03.09
(71)申请人 哈尔
文档评论(0)