- 1、本文档共24页,其中可免费阅读23页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明涉及一种基于多任务学习的云服务发现方法,该方法构建了一个构建PDAML模型,PDAML模型由ad‑hoc模块和个性化模块构成,通过所述ad‑hoc模块负责理解服务请求者查询意图并对候选服务计算排名得分,通过所述个性化模块得到一个表示服务请求者的兴趣特征的得分,对PDAML模型进行训练更新参数,对于一个服务请求者的当前查询,将ad‑hoc模块计算的当前查询对应的候选服务描述文档的得分和当前查询对应的候选服务描述文档的个性化排名得分送入一个MLP层中得到最终的排名得分,按照最终排名得分的由高到
(19)国家知识产权局
(12)发明专利
(10)授权公告号 CN 112966096 B
(45)授权公告日 2022.05.24
(21)申请号 202110371604.7 US 2020349230 A1,2020.11.05
(22)申请日
文档评论(0)