- 1、本文档共13页,其中可免费阅读12页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种基于谱重建的监督多集相关特征融合方法,包括1)定义训练样本集的投影方向;2)计算训练样本的组间类内相关矩阵和自协方差矩阵;3)组间类内相关矩阵做奇异值分解,自协方差矩阵做特征值分解;4)重构分数阶组间类内相关矩阵和分数阶自协方差矩阵;5)构建FDMCCA的最优化模型;6)求解特征向量矩阵,形成投影矩阵;7)融合降维后的特征;8)选取不同数量的图像分别做训练集和测试集,计算识别率。本发明能够有效地处理多个视图数据的信息融合问题,同时分数阶参数的引入削弱了因噪声干扰和有限训练样本带来
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 112966735 A
(43)申请公布日 2021.06.15
(21)申请号 202110235178.4 G06F 17/18 (2006.01)
(22)申请日 2
文档评论(0)