- 1、本文档共13页,其中可免费阅读12页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明涉及自然语言处理领域,公开了一种用于突发事件新闻识别与分类的半监督学习方法,包括以下步骤:抓取微博网站内容作为初始新闻数据集,通过人工标注得到标注数据集Dl;对未标注样本进行前置过滤操作,采用数据增强方法得到带扰动的未标注数据集;利用所述标注数据集Dl对基于BERT的多分类器模型进行监督学习、并最小化经验风险函数,利用基于BERT的多分类器模型对所述预过滤后的数据集和带扰动的未标注数据集进行预测,获得半监督学习训练出的基于BERT的多分类器模型实现突发事件新闻的识别和分类任务。本发明能够克
(19)中华人民共和国国家知识产权局
(12)发明专利
(10)授权公告号 CN 112989841 B
(45)授权公告日 2021.09.21
(21)申请号 202110206548.1 G06K 9/62 (2006.01)
文档评论(0)