- 1、本文档共6页,其中可免费阅读5页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明涉及一种基于多阶段训练的农作物病害长尾图像识别方法,属于深度学习和图像识别领域。该方法包括:搭建卷积神经网络模型对农作物病虫害进行识别,并采用多阶段训练的方法进行训练提高模型的鲁棒性和对不均衡数据的识别能力。第一阶段训练采用原始的不均衡的数据进行模型训练,让模型学习到原始的数据分布;第二阶段训练采用CutMix增强后的数据集进行模型训练,提升模型的鲁棒性;第三阶段训练采用平衡采样后分布均衡的数据集进行模型训练,训练时冻结卷积模块的参数更新,只更新全连接层参数,在保留前两阶段获得的特征提取能
(19)中华人民共和国国家知识产权局
(12)发明专利
(10)授权公告号 CN 113076873 B
(45)授权公告日 2022.02.22
(21)申请号 202110356903.3 G06V 10/774 (2022.01)
文档评论(0)