生物制氢过程的运用前景和发展方向.pptxVIP

生物制氢过程的运用前景和发展方向.pptx

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第1页/共25页生物制氢过程的运用前景和发展方向第2页/共25页提 纲制氢方法的简介生物制氢方法的介绍生物制氢技术的运用、前景生物制氢技术的发展方向第3页/共25页一.制氢方法的介绍1.基于化石燃料的方法天然气的蒸气重整;天燃气的热裂解;石油碳氢化合物重组分的部分氧化;煤的气化;热裂解或气化占整个氢气产量的90%以上第4页/共25页2.基于以水为原料的方法电解;光解;热化学过程;直接热分解占整个氢气产量的4%左右第5页/共25页3.基于生物技术的方法藻类和蓝细菌光解水;光合细菌光分解有机物;有机物的发酵制氢;光合微生物和发酵性微生物的联合运用生物质制氢第6页/共25页生物制氢的优点耗能低、效率高;清洁、节能和可再生;原料成本低,制氢过程不污染环境;一些生物制氢过程具有较好的环境效益第7页/共25页二.生物制氢方法的介绍1.直接光解技术(绿藻) 在厌氧条件下,绿藻既可以利用氢作为电子供体用于二氧化碳的固定或释放氢气第8页/共25页 由于氧对氢酶的严重抑制,必须将光合放氧和光合放氢在时间上或空间上分开,可以通过部分抑制PSII光化学活性来实现:元素调控,如:硫、磷PSII抑制剂,如:DCMU、CCCP、FCCP代表性藻株有:Chlamydomonas reinhardtii产氢速率为:7.95mmol H2/L ,100h.第9页/共25页2.间接光解产氢(蓝细菌)蓝细菌主要分为:蓝绿藻、蓝藻纲类、蓝藻类固氮酶:催化还原氮气成氨,氢气作为副产物产生可逆氢酶:能够氧化合成氢气吸氢酶:氧化由固氮酶催化产生的氢气第10页/共25页总反应式为:12H2O + 6CO2 Light energy C6H12O6 +6O2C6H12O6 + 12H2O Light energy 12H2 +6CO2代表性菌(藻)株:Anabaena variablilis 4.2 umol H2/mg chla/h第11页/共25页3.光发酵产氢(无硫紫细菌) 无硫紫细菌在缺氮条件下,用光能和还原性底物产生氢气 : C6H12O6 + 12H2O Light energy12H2 + 6CO2代表菌株为:Rhodospirillum rubrumL: 180 ml H2/L of culture/h; Rb.spheroides: 3.6-4.0 L H2/L or immobilized culture/h 已有将这类微生物光发酵产氢用于处理有机废水的实例第12页/共25页4.光合异养微生物水气转化反应产生氢气 一些光合异养微生物在暗条件下能够利用CO做为单一碳源,产生ATP的同时释放出H2、CO2 CO(g) + H2O(l) → CO2(g) + H2(g) (1) Rubrivivax gelatinosus CBS 不仅可以在暗条件下进行CO-水-气转换反应,而且能利用光能固定CO2将CO同化为细胞质;即使在有其他有机底物的情况下,其也能够很好利用CO第13页/共25页(2) Rubrivivax gelatinosus CBS 能够100%转换气态的CO成H2;(3)这类微生物的氢酶具有很强的耐氧性,在空气中充分搅拌时氢酶的半衰期为21h.代表性菌株:Rubrivivax gelatinosus CBS 96mmol H2/mg cdw/h第14页/共25页5.暗发酵制氢 厌氧细菌利用有机底物进行暗发酵产生氢气;温度范围25-80℃,或超高温?80 ℃(1)当乙酸为终产物时:C6H12O6 + 2H2O→ 2CH3COOH + 4H2 + 2CO2(2)当丁酸为终产物时:C6H12O6 + 2H2O→ CH3CH2CH2COOH + 2H2 + 2CO2 当H2、CO2分压增加,产氢速率明显降低,合成更多与产氢竞争的底物第15页/共25页 氢气产生速率与:pH、水力停留时间、 氢分压等有很大关系 利用厌氧细菌发酵纤维素、半纤维素、木质素降解后的小分子有机物,具有很强的环境、经济效益第16页/共25页三.生物制氢技术的运用前景BioH2 system H2 synthesis rate 1.0 kW (mmol H2 (l × h)) FC(l)Direct photolysis 0.07 3.41*105Indirect photolysis 0.355 6.73*104Photo-fermentation 0.16 1.49*105CO-oxidation 96.0 2.49*102Dark fermentationsMesophilic,undefined 121.0 1.

文档评论(0)

kuailelaifenxian + 关注
官方认证
文档贡献者

该用户很懒,什么也没介绍

认证主体太仓市沙溪镇牛文库商务信息咨询服务部
IP属地上海
统一社会信用代码/组织机构代码
92320585MA1WRHUU8N

1亿VIP精品文档

相关文档