- 1、本文档共13页,其中可免费阅读12页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种结合图像复杂度的深度学习图像分类方法及系统,涉及计算机视觉图像识别领域,该方法包括以下步骤:步骤S1:将所有图像缩放至200*200大小,并分为训练集和测试集;步骤S2:计算所有训练集图像的平均复杂度,根据平均复杂度选择网络结构1、网络结构2和网络结构3中的其中一种网络结构;步骤S3:选择好网络结构后,网络模型对训练集数据进行训练;步骤S4:根据训练好的模型对测试集数据进行分类识别。本发明与目前主流的深度学习算法相比,能通过分析图像的复杂度自动选择合适网络结构,在保证网络性能下,
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 113139576 A
(43)申请公布日 2021.07.20
(21)申请号 202110302261.9
(22)申请日 2021.03.22
(71)申请人 广东省科学院智能制造研究所
文档评论(0)