- 1、本文档共13页,其中可免费阅读12页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种基于自监督学习的颈动脉超声图像识别方法。所述方法包括以下步骤:(1)采集颈动脉超声图像并预处理;(2)根据预处理后所得的超声图像数据集使用自监督学习的辅助任务函数扩充数据集和生成对应的伪标签;(3)将从步骤(2)所得的新的超声图像数据集载入神经网络中训练,保存学习到的最优网络权重参数;(4)将网络权重参数迁移到目标神经网络中,对步骤(1)所得的预处理后的超声图像数据集进行学习,得到目标神经网络的最优网络模型,再对测试集进行测试获得最终测试精度。本方法将自监督学习方法应用于颈动脉超
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 113159223 A
(43)申请公布日 2021.07.23
(21)申请号 202110532794.6
(22)申请日 2021.05.17
(71)申请人 湖北工业大学
地址
文档评论(0)