- 1、本文档共25页,其中可免费阅读24页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明实施例涉及机器学习技术领域,公开了一种基于特征多样性学习的深度集成模型训练方法,该方法包括:获取样本数据(110);将样本数据输入当前集成模型,得到每个基模型的高层特征向量(120);根据高层特征向量中各个神经元的激活值,确定激活强度区间(130);根据各个子区间内激活值的统计特征确定各个基模型在各个子区间中的神经元的保留概率,根据保留概率调整各个所述神经元的激活值,得到当前集成模型更新的高层特征多样性表示;其中,M大于等于K(140);根据当前集成模型更新的高层特征多样性表示,输出样本数
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 113228062 A
(43)申请公布日 2021.08.06
(21)申请号 202180000322.4 G06N 3/04 (2006.01)
(22)申请日 20
文档评论(0)