- 1、本文档共14页,其中可免费阅读13页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开一种基于多视图关联特征学习的轴承故障诊断方法,将振动信号和电流信号视为不同的视图,基于多视图学习设计齿轮箱轴承振动信号与发电机电流特征的关联特征学习方法,应用于风电齿轮箱轴承的多故障诊断。该方法首先从振动和电流信号中提取小波包分频带时域统计特征得到初始的振动特征空间和电流特征空间,然后将振动与电流特征样本成对输入典型相关学习网络进行关联性特征学习,使电流与振动信号特征映射之间的相关性最大,实现振动和电流特征的增强性提取。本发明能够以无监督的方式学习振动与电流信号中的关联属性并获得共有故
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 113255458 A
(43)申请公布日 2021.08.13
(21)申请号 202110473166.5
(22)申请日 2021.04.29
(71)申请人 燕山大学
地址 06
文档评论(0)