- 1、本文档共11页,其中可免费阅读10页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本申请公开的一种基于平均压缩获取低频信息的对抗样本防御方法,通过第一卷积神经网络模型和第二神经网络模型分别识别对抗样本和根据对抗样本压缩提取的第二低频信息图像,然后综合这两个模型的识别结果,在检测干净的原始测试图像和扰动较小的对抗样本时,第一神经网络模型对于高频信息较为敏感且扰动对结果影响较小,所以此时第一神经网络模型的识别结果更可信,在对抗样本扰动较高时,第二神经网络模型对于高频的扰动不敏感,受到影响较小,且在压缩中会将扰动过滤掉一部分,所以此时第二神经网络模型的识别结果更可信。通过综合这两种
(19)国家知识产权局
(12)发明专利
(10)授权公告号 CN 113409407 B
(45)授权公告日 2022.05.17
(21)申请号 202110536885.7 (56)对比文件
文档评论(0)