- 1、本文档共16页,其中可免费阅读15页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
面向深度强化学习的模型隐私保护方法,包括:对目标智能体进行预训练得到目标策略πt;根据深度强度学习预训练模型的策略πt生成T个时刻小车驾驶序列状态动作对作为专家数据用于模仿学习以生成模仿策略πIL;基于模型学习生成模仿策略πIL;对目标智能体的模型进行隐私保护;对目标智能体进行对抗训练。本发明还包括面向深度强化学习的模型隐私保护的系统。本发明能够防止窃取者通过窃取模型进行攻击,在保证目标策略性能好的基础上还保证模仿策略的性能要低以达到模型隐私保护的目的。
(19)国家知识产权局
(12)发明专利
(10)授权公告号 CN 113420326 B
(45)授权公告日 2022.06.21
(21)申请号 202110635546.4 CN 111600851 A,2020.08.28
文档评论(0)