- 1、本文档共18页,其中可免费阅读17页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明提出了一种基于深度学习的医学图像活动轮廓分割方法,其步骤如下:获取医学图像作为样本图像,将样本图像分成训练集和测试集,获取训练集中样本图像的像素级的标签;构建初始化网络并进行训练,得到粗分割模型;将所有样本图像输入到粗分割模型中得到像素级的粗分割预测图像,提取粗分割预测图像的边界点得到初始化表面的点云数据;构建表面演化网络模型并训练表面演化网络模型,得到表面演化模型;将测试集的初始化表面的点云数据输入到表面演化模型中得到边界点的预测位移,根据预测位移确定目标边界点:利用目标边界点进行三维表
(19)国家知识产权局
(12)发明专利
(10)授权公告号 CN 113436211 B
(45)授权公告日 2022.07.15
(21)申请号 202110887252.0 (56)对比文件
(22)申请日
文档评论(0)