2019人教统编版高中数学A版选择性必修第三册第八章《成对数据的统计分析》-PPT课件含章末复习课.pptx

2019人教统编版高中数学A版选择性必修第三册第八章《成对数据的统计分析》-PPT课件含章末复习课.pptx

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共136页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2019人教A版高中数学选择性必修第三册 第八章《成对数据的统计分析》PPT课件目录8.1.1 变量的相关关系8.1.2 样本的相关系数8.2.1 一元线性回归模型8.2.2 参数的最小二乘估计8.3 列联表与独立性检验章末复习课已分节,点击标题可直接跳转到相应课程 第八章 成对数据的统计分析8.1.1 变量的相关关系 学习目标:1. 理解变量的相关关系;2. 会画出成对样本数据的散点图;3. 会通过散点图判断成对样本数据的相关性;教学重点:利用散点图直观判断成对数据的相关性.教学难点:作出成对数据的散点图,通过散点图判断成对样本数据的相关性. 人的体重与身高存在关系,但由一个人的身高值并不能确定他的体重值.那么,该如何刻画这两个变量之间的关系呢?思考: 一、变量的相关关系 一个人的体重与他的身高有关系.一般而言,个子高的人往往体重值较大,个子矮的人往往体重值较小.但身高并不是决定体重的唯一因素,例如生活中的饮食习惯、体育锻炼、睡眠时间以及遗传因素等也是影响体重的重要因素.像这样,两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系. 两个变量具有相关关系的事例在现实中大量存在.例如:1.子女身高y与父亲身高x之间的关系.一般来说,父亲的个子高,其子女的个子也会比较高;父亲个子矮,其子女的个子也会比较矮.但影响子女身高的因素,除父亲身高外还有其他因素,例如母亲身高、饮食结构、体育锻炼等,因此父亲身高又不能完全决定子女身高.2.商品销售收入y与广告支出x之间的关系.一般来说,广告支出越多,商品销售收入越高.但广告支出并不是决定商品销售收入的唯一因素,商品销售收入还与商品质量、居民收入等因素有关. 3.空气污染指数y与汽车保有量x之间的关系.一般来说,汽车保有量增加,空气污染指数会上升.但汽车保有量并不是造成空气污染的唯一因素,气象条件、工业生产排放、居民生活和取暖、垃圾焚烧等都是影响空气污染指数的因素.4.粮食亩产量y与施肥量x之间的关系.在一定范围内,施肥量越大,粮食亩产量就越高.但施肥量并不是决定粮食亩产量的唯一因素,粮食亩产量还要受到土壤质量、降水量、田间管理水平等因素的影响. 因为在相关关系中,变量y的值不能随变量x的值的确定而唯一确定,所以我们无法直接用函数去描述变量之间的这种关系.因此,在研究两个变量之间的相关关系时,我们需要借助数据说话,即通过样本数据分析,从数据中提取信息,并构建适当的模型,再利用模型进行估计或推断. 二、散点图 在对人体的脂肪含量和年龄之间关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据,如表所示,表中每个编号下的年龄和脂肪含量数据都是对同一个体的观测结果,它们构成了成对数据. 根据以上数据,你能推断人体的脂肪含量与年龄之间存在怎样的关系吗? 为了更加直观地描述上述成对样本数据中脂肪含量与年龄之间的关系,类似于用直方图描述单个变量样本数据的分布特征,我们用图形展示成对样本数据的变化特征.用横轴表示年龄,纵轴表示脂肪含量,则表中每个编号下的成对样本数据都可用直角坐标系中的点表示出来,由这些点组成了如图所示的统计图.我们把这样的统计图叫做散点图. 三、由散点图判断变量的相关关系 观察下图,可以发现,这些散点大致落在一条从左下角到右上角的直线附近,表明随年龄值的增加,相应的脂肪含量值呈现增高的趋势.这样,由成对样本数据的分布规律,我们可以推断脂肪含量变量和年龄变量之间存在着相关关系. 如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关.由上图,能够推断脂肪含量与年龄这两个变量正相关. 散点图是描述成对数据之间关系的一种直观方法.观察上图散点图,从中不仅可以大致看出脂肪含量和年龄呈现正相关性,而且从整体上可以看出散点落在某条直线附近.一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们就称这两个变量线性相关. 观察散点图,我们发现:图(1)中的散点落在某条曲线附近,而不是落在一条直线附近,说明这两个变量具有相关性,但不是线性相关;类似地,图(2)中的散点落在一条折线附近,这两个变量也具有相关性,但它们既不是正相关,也不是负相关;图(3)中的散点杂乱无章,无规律可言,看不出两个变量有什么相关性. 一般地,如果两个变量具有相关性,但不是线性相关,那么就称这两个变量非线性相关或曲线相关. 1.下列两个变量之间的关系是相关关系的是( ) A.正方体的棱长和体积 B.单位圆中角的度数和所对弧长 C.学生的学籍号与学生的数学成绩 D.日照时间与水稻的亩产量练一练D解析:选项A,B中两

文档评论(0)

偶遇 + 关注
实名认证
内容提供者

个人介绍

1亿VIP精品文档

相关文档