QAsystems(斯坦福问答系统).pdf

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
QAsystems (斯坦福问答系统) 最近在阅读⼀些AI项⽬,写⼊markdown,持续更新,算是之后也能回想起做法 QA systems(问答系统) tutorial(指导): Question answering is an important NLP task and longstanding milestone for artificial intelligence systems. QA systems allow a user to ask a question in natural language, and receive the answer to their question quickly and succinctly.(问答是⼀ 项重要的NLP任务,是⼈⼯智能的长久基⽯。问答系统让⽤户⽤⾃然语⾔提问,然后能快速有效地给予回复) The ability to read a piece of text and then answer questions about it is called reading comprehension. Reading comprehension is challenging for machines, requiring both understanding of natural language and knowledge about the world.(阅读部分⽂本然后回答的能⼒称为阅读理解。阅读理解对于机器⽽⾔是⼀⼤挑战,不仅需要对⾃然语⾔的理解,还需要来⾃于世界 的知识) SQuAD Dataset(数据集) Stanford Question Answering Dataset (SQuAD) is a new reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage. With 100,000+ question-answer pairs on 500+ articles, SQuAD is significantly larger than previous reading comprehension datasets.(斯坦福问答数据集是⼀个新的阅读理解数据集,由群体⼯作者在⼀组维基百科⽂章中提出 的问题,其中每个问题的答案是⼀段⽂本或跨度,从相应的阅读段落。100000 +问答对500 +⽂章,斯坦福问答数据集明显⼤于以前的阅 读理解数据集。) Problem(问题) For each observation in the training set, we have a context, question, and text.(对于训练集的每⼀次观察,我们有内容、问题和⽂ 本) The goal is to find the text for any new question and context provided. This is a closed dataset meaning that the answer to a question is always a part of the context and also a continuous span of context. I have broken this problem into two parts for now(⽬标是在任意新问题和提供的内容中找到对应⽂本。这是⼀个相关的数据集,回复往往是内容的⼀部分和⼀段连续的跨度。我将这个 问题分为两个部分) - 1、Getting the sentence having the right answer (highlighted yellow)(获取含有正确答案的内容(图中黄⾊标注)) 2、Once the sentence is finalized, getting the correct answer from the sentence (highlighted green)(⼀旦内容准备好了,获取 其正确答案(图中绿⾊标注)) Introducing Infersent, Facebook Sentence Embedding(介绍句⼦嵌⼊) These days

文档评论(0)

. + 关注
官方认证
内容提供者

专注于职业教育考试,学历提升。

版权声明书
用户编号:8032132030000054
认证主体社旗县清显文具店
IP属地河南
统一社会信用代码/组织机构代码
92411327MA45REK87Q

1亿VIP精品文档

相关文档