阿里巴巴笔试题:数据分析与建模测试.pdfVIP

阿里巴巴笔试题:数据分析与建模测试.pdf

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
阿⾥巴巴笔试题:数据分析与建模测试 阿⾥巴巴笔试题:数据分析与建模测试 请阅读以下⽂字答题。 Field Descriptions: isbuyer - Past purchaser of product buy_freq - How many times purchased in the past visit_freq - How many times visited website in the past buy_interval - Average time between purchases sv_interval - Average time between website visits expected_time_buy - ? expected_time_visit - ? last_buy - Days since last purchase. last_visit - Days since last website visit. multiple_buy - ? multiple_visit - ? uniq_url - Number of unique urls we observed web browser on. num_checkins - Number of times we observed web browser. y_buy - Outcome variable of interest, Did they purchase in period of interest. Question: Each observation in the provided training/test dataset is a web browser (or cookie) in our observed Universe. The goal is to model the behavior of a future purchase and classify cookies into those that will purchase in the future and those that will not. y_buy is the outcome variable that represents if a cookie made a purchase in the period of interest. All of the rest of the columns in the data set were recorded prior to this purchase and may be used to predict purchase. Please use ‘ads_train.csv’ as training data to create at least two different classes of models (e.g. logistic regression, random forest, etc.) to classify these cookies into future buyers or not. Explain your choice of model, how you did model selection, how you validated the quality of the model, and which variables are most informative of purchase. Also, comment on any general trends or anomalies in the data you can identify as well as propose a meaning for those fields not defined. The deliverable is a document with text and figures illustrating your thought process, how you began to explore the data, and a comparison of the models that you created. When evaluating your models, consider metrics such asAUC of Precision-Recall Curve, precision, recall

您可能关注的文档

文档评论(0)

139****1921 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档