- 1、本文档共65页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
\o 点击文章标题可访问原文章链接 \o 点击文章标题可访问原文章链接 吴恩达:22张图全解深度学习知识
本文仅用于学术分享,如有侵权,联系删文处理。
吴恩达在推特上展示了一份由 TessFerrandez 完成的深度学习专项课程信息图,这套信息图优美地记录了深度学习课程的知识与亮点。因此它不仅仅适合初学者了解深度学习,还适合机器学习从业者和研究者复习基本概念。这不仅仅是一份课程笔记,同时还是一套信息图与备忘录。
从深度学习基础、卷积网络和循环网络三个方面介绍该笔记
深度学习基础
1. 深度学习基本概念
监督学习:?所有输入数据都有确定的对应输出数据,在各种网络架构中,输入数据和输出数据的节点层都位于网络的两端,训练过程就是不断地调整它们之间的网络连接权重。
左上:?列出了各种不同网络架构的监督学习,比如标准的神经网络(NN)可用于训练房子特征和房价之间的函数,卷积神经网络(CNN)可用于训练图像和类别之间的函数,循环神经网络(RNN)可用于训练语音和文本之间的函数。
左下:?分别展示了 NN、CNN 和 RNN 的简化架构。这三种架构的前向过程各不相同,NN 使用的是权重矩阵(连接)和节点值相乘并陆续传播至下一层节点的方式;CNN 使用矩形卷积核在图像输入上依次进行卷积操作、滑动,得到下一层输入的方式;RNN 记忆或遗忘先前时间步的信息以为当前计算过程提供长期记忆。
右上:?NN 可以处理结构化数据(表格、数据库等)和非结构化数据(图像、音频等)。
右下:?深度学习能发展起来主要是由于大数据的出现,神经网络的训练需要大量的数据;而大数据本身也反过来促进了更大型网络的出现。深度学习研究的一大突破是新型激活函数的出现,用 ReLU 函数替换sigmoid 函数可以在反向传播中保持快速的梯度下降过程,sigmoid 函数在正无穷处和负无穷处会出现趋于零的导数,这正是梯度消失导致训练缓慢甚至失败的主要原因。要研究深度学习,需要学会「idea—代码—实验—idea」的良性循环。
2. logistic 回归
左上:?logistic 回归主要用于二分类问题,如图中所示,logistic 回归可以求解一张图像是不是猫的问题,其中图像是输入(x),猫(1)或非猫(0)是输出。我们可以将 logistic 回归看成将两组数据点分离的问题,如果仅有线性回归(激活函数为线性),则对于非线性边界的数据点(例如,一组数据点被另一组包围)是无法有效分离的,因此在这里需要用非线性激活函数替换线性激活函数。在这个案例中,我们使用的是 sigmoid 激活函数,它是值域为(0, 1)的平滑函数,可以使神经网络的输出得到连续、归一(概率值)的结果,例如当输出节点为(0.2, 0.8)时,判定该图像是非猫(0)。
左下:?神经网络的训练目标是确定最合适的权重 w 和偏置项 b,那这个过程是怎么样的呢?
这个分类其实就是一个优化问题,优化过程的目的是使预测值 y hat 和真实值 y 之间的差距最小,形式上可以通过寻找目标函数的最小值来实现。所以我们首先确定目标函数(损失函数、代价函数)的形式,然后用梯度下降逐步更新 w、b,当损失函数达到最小值或者足够小时,我们就能获得很好的预测结果。
右上:?损失函数值在参数曲面上变化的简图,使用梯度可以找到最快的下降路径,学习率的大小可以决定收敛的速度和最终结果。学习率较大时,初期收敛很快,不易停留在局部极小值,但后期难以收敛到稳定的值;学习率较小时,情况刚好相反。一般而言,我们希望训练初期学习率较大,后期学习率较小,之后会介绍变化学习率的训练方法。
右下:?总结整个训练过程,从输入节点 x 开始,通过前向传播得到预测输出 y hat,用 y hat 和 y 得到损失函数值,开始执行反向传播,更新 w 和 b,重复迭代该过程,直到收敛。
3. 浅层网络的特点
左上:?浅层网络即隐藏层数较少,如图所示,这里仅有一个隐藏层。
左下:?这里介绍了不同激活函数的特点:
sigmoid:sigmoid 函数常用于二分分类问题,或者多分类问题的最后一层,主要是由于其归一化特性。sigmoid 函数在两侧会出现梯度趋于零的情况,会导致训练缓慢。
tanh:相对于 sigmoid,tanh 函数的优点是梯度值更大,可以使训练速度变快。
ReLU:可以理解为阈值激活(spiking model 的特例,类似生物神经的工作方式),该函数很常用,基本是默认选择的激活函数,优点是不会导致训练缓慢的问题,并且由于激活值为零的节点不会参与反向传播,该函数还有稀疏化网络的效果。
Leaky ReLU:避免了零激活值的结果,使得反向传播过程始终执行,但在实践中很少用。
右上:为什么要使用激活函数呢?更准确地说是,为什么要使用非线性激活函数呢
文档评论(0)