大数据技术原理与应用林子雨课后习题答案.docxVIP

大数据技术原理与应用林子雨课后习题答案.docx

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
大数据技术原理与应用林子雨课后习题答案 第一章1.试述信息技术发展史上的3次信息化浪潮及具体内容。 2.试述数据产生方式经历的几个阶段 答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。 3.试述大数据的4个基本特征 答:数据量大、数据类型繁多、处理速度快和价值密度低。 4.试述大数据时代的“数据爆炸”的特性 答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段? 答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。 6.试述大数据对思维方式的重要影响 答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统的基于数据仓库的决策有什么区别 答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。 大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。 8.举例说明大数据的基本应用 答: 9.举例说明大数据的关键技术 答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。 11.定义并解释以下术语:云计算、物联网 答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。 物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。 12.详细阐述大数据、云计算和物联网三者之间的区别与联系。 第二章 1.试述hadoop和谷歌的mapreduce、gfs等技术之间的关系 答:Hadoop的核心是分布式文件系统HDFS和MapReduce,HDFS是谷歌文件系统GFS的开源实现,MapReduces是针对谷歌MapReduce的开源实现。 2.试述Hadoop具有哪些特性。 答:高可靠性,高效性,高可扩展性,高容错性,成本低,运行在Linux平台,支持多种编程语言 3.试述Hadoop在各个领域的应用情况。 答:2007年,雅虎在Sunnyvale总部建立了M45——一个包含了4000个处理器和1.5PB容量的Hadooop集群系统; Facebook主要将Hadoop平台用于日志处理,推荐系统和数据仓库等方面; 百度主要使用Hadoop于日志的存储和统计、网页数据的分析和挖掘、商业分析、在线数据反馈、网页聚类等。 4.试述Hadoop的项目结构以及每个部分的具体功能。 答: 库 Avro是为Hadoop的子项目,用于数据序列化的系统,提供了丰富的数据结构类型、快速可压缩的二进制数据格式、存储持续性数据的文件集、远程调用的功能和简单的动态语言集成功能。 HDFS是Hadoop项目的两个核心之一,它是针对谷歌文件系统的开源实现。 HBase是一个提高可靠性、高性能、可伸缩、实时读写、分布式的列式数据库,一般采用HDFS作为其底层数据存储。 MapReduce是针对谷歌MapReduce的开源实现,用于大规模数据集的并行运算。 Zoookepper是针对谷歌Chubby的一个开源实现,是高效和可靠的协同工作系统,提供分布式锁之类的基本服务,用于构建分布式应用,减轻分布式应用程序所承担的协调任务。 Hive是一个基于Hadoop的数据仓库工具,可以用于对Hadoop文件中的数据集进行数据整理、特殊查询和分布存储。 Pig是一种数据流语言和运行环境,适合于使用Hadoop和MapReducce平台上查询大型半结构化数据集。 Sqoop可以改进数据的互操作性,主要用来在H大哦哦哦配合关系数据库之间交换数据。 Chukwa是一个开源的、用于监控大型分布式系统的数据收集系统,可以将各种类型的数据收集成适合Hadoop处理的文件,并保存在HDFS中供Hadoop进行各种 MapReduce操作。 第三章 1.试述分布式文件系统设计的需求。 分布式文件系统在物理结构上是由计算机集群中的多个节点构成的,这些节点分为两类,一类叫“主节点”(Master Node)或者也被称为“名称结点”(NameNode),另一类叫“从节点”(Slave Node)或者也被称为“数据节点”(DataNode) 3.试述HDFS中的块和普通文件系统中的块的区别。 答:在传统的文件系统中,为了提高磁盘读写效率,一般以数据块为单位,恶如不是以字节为单位。 HDFS中的块,默认一个块大

文档评论(0)

movie + 关注
实名认证
文档贡献者

喜欢分享的作者

1亿VIP精品文档

相关文档