网站大量收购独家精品文档,联系QQ:2885784924

视差求取matlab代码.docxVIP

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
实用文档 Stereo Vision This example shows how to compute the depth map between two rectified stereo images. See the Image Rectification ExampleImage Rectification Example to learn about the details behind rectification. In this example we use block matching, which is the standard algorithm for high-speed stereo vision in hardware systems [8]. We first explore basic block matching, and then apply dynamic programming to improve accuracy, and image pyramiding to improve speed. Stereo vision is the process of recovering depth from camera images by comparing two or more views of the same scene. Simple, binocular stereo uses only two images, typically taken with parallel cameras that were separated by a horizontal distance known as the baseline. The output of the stereo computation is a disparity map (which is translatable to a range image) which tells how far each point in the physical scene was from the camera. Step 1. Read Stereo Image PairHere we read in the color stereo image pair and convert the images to gray scale for the matching process. Using color images may provide some improvement in accuracy, but it is more efficient to work with only one-channel images. For this we use the ImageDataTypeConverter and the ColorSpaceConverter System objects. Below we show the left camera image and a color composite of both images so that one can easily see the disparity between them. hIdtc = vision.ImageDataTypeConverter; hCsc = vision.ColorSpaceConverter(Conversion,RGB to intensity); leftI3chan = step(hIdtc,imread(vipstereo_hallwayLeft.png)); leftI = step(hCsc,leftI3chan); rightI3chan = step(hIdtc,imread(vipstereo_hallwayRight.png)); rightI = step(hCsc,rightI3chan); figure(1), clf; clf; 用来清除图形的命令。一般在画图之前用。 imshow(rightI3chan), title(Right image); figure(2), clf; imshowpair(rightI,leftI,ColorChannels,red-cyan), axis image; title(Color composite (right=red, left=cyan)); Step 2. Basic Block MatchingNext we perform basic block matching. For every pixel in the right image, we ext

文档评论(0)

151****1215 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档